login
A287469
Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 276", based on the 5-celled von Neumann neighborhood.
4
1, 0, 110, 0, 11100, 0, 1111000, 0, 111110000, 0, 11111100000, 0, 1111111000000, 0, 111111110000000, 0, 11111111100000000, 0, 1111111111000000000, 0, 111111111110000000000, 0, 11111111111100000000000, 0, 1111111111111000000000000, 0
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
From Colin Barker, May 29 2017: (Start)
Conjectures:
G.f.: 1 / ((1 - 10*x)*(1 + 10*x)*(1 - 10*x^2)).
a(n) = (10^(n+1) - 10^(n/2)) / 9 for n even.
a(n) = 0 for n odd.
a(n) = 110*a(n-2) - 1000*a(n-4) for n>3.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 276; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 25 2017
STATUS
approved