login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169938
a(n) = n*(n+1)*(n*(n+1)+1).
7
0, 0, 6, 42, 156, 420, 930, 1806, 3192, 5256, 8190, 12210, 17556, 24492, 33306, 44310, 57840, 74256, 93942, 117306, 144780, 176820, 213906, 256542, 305256, 360600, 423150, 493506, 572292, 660156, 757770, 865830, 985056, 1116192, 1260006, 1417290, 1588860
OFFSET
-1,3
COMMENTS
Partial sums of A061804. - Bruno Berselli, Feb 10 2017
LINKS
Nathan Kaplan, Susie Kimport, Rachel Lawrence, Luke Peilen, and Max Weinreich, Counting arcs in projective planes via Glynn’s algorithm, J. Geom. 108, No. 3 (2017), 1013-1029, Th. 1.4, C_2.
FORMULA
a(n+1) = a(n) + 2*(n+1)*(2*(n+1)^2+1). - Robert Munafo, Jul 27 2010
G.f.: 6*x*(1 + 2*x + x^2)/(1-x)^5. - Vincenzo Librandi, Dec 18 2012, corrected Aug 29 2022
From Daniel Poveda Parrilla, Jun 08 2017 and Jun 11 2017: (Start)
a(n) = A002378(n)*A002061(n+1) for n > -1.
a(n) = A002061(A002061(n+1)) - 1. (End)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Jan 25 2022
a(n) = 6*A006325(n+1). - R. J. Mathar, Aug 29 2022
Sum_{n>=1} 1/a(n) = 2 - tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Sep 22 2022
MAPLE
A169938 := proc(n)
n*(n+1)*(n*(n+1)+1);
end proc:
seq(A169938(n), n=-1..40) ; # R. J. Mathar, Aug 29 2022
MATHEMATICA
CoefficientList[Series[6*x^2(1 + 2*x + x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 6, 42, 156}, 40] (* Harvey P. Dale, Oct 14 2023 *)
PROG
(Magma) [n*(n+1)*(n*(n+1)+1): n in [-1..40]]; // Vincenzo Librandi, Dec 18 2012
(PARI) a(n) = n + 2*n^2 + 2*n^3 + n^4; \\ Altug Alkan, Feb 10 2017
(PARI) a(n) = n*=n+1; n*=n+1 \\ David A. Corneth, Jun 11 2017
(Python)
def A169938(n): return n*(n*(n*(n + 2) + 2) + 1) # Chai Wah Wu, Aug 29 2022
CROSSREFS
A variant of A176780.
A lower bound on A082986.
Sequence in context: A199905 A360757 A176780 * A082986 A180806 A253946
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 25 2010, based on an email from Terry Stickel
EXTENSIONS
The terms were also computed by Robert Munafo, Jul 25 2010
STATUS
approved