OFFSET
-1,3
COMMENTS
Partial sums of A061804. - Bruno Berselli, Feb 10 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = -1..1000
Nathan Kaplan, Susie Kimport, Rachel Lawrence, Luke Peilen, and Max Weinreich, Counting arcs in projective planes via Glynn’s algorithm, J. Geom. 108, No. 3 (2017), 1013-1029, Th. 1.4, C_2.
Daniel Poveda Parrilla, Illustration of initial terms seen as cuboids.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n+1) = a(n) + 2*(n+1)*(2*(n+1)^2+1). - Robert Munafo, Jul 27 2010
G.f.: 6*x*(1 + 2*x + x^2)/(1-x)^5. - Vincenzo Librandi, Dec 18 2012, corrected Aug 29 2022
From Daniel Poveda Parrilla, Jun 08 2017 and Jun 11 2017: (Start)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Jan 25 2022
a(n) = 6*A006325(n+1). - R. J. Mathar, Aug 29 2022
Sum_{n>=1} 1/a(n) = 2 - tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Sep 22 2022
MAPLE
A169938 := proc(n)
n*(n+1)*(n*(n+1)+1);
end proc:
seq(A169938(n), n=-1..40) ; # R. J. Mathar, Aug 29 2022
MATHEMATICA
CoefficientList[Series[6*x^2(1 + 2*x + x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 6, 42, 156}, 40] (* Harvey P. Dale, Oct 14 2023 *)
PROG
(Magma) [n*(n+1)*(n*(n+1)+1): n in [-1..40]]; // Vincenzo Librandi, Dec 18 2012
(PARI) a(n) = n + 2*n^2 + 2*n^3 + n^4; \\ Altug Alkan, Feb 10 2017
(PARI) a(n) = n*=n+1; n*=n+1 \\ David A. Corneth, Jun 11 2017
(Python)
def A169938(n): return n*(n*(n*(n + 2) + 2) + 1) # Chai Wah Wu, Aug 29 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 25 2010, based on an email from Terry Stickel
EXTENSIONS
The terms were also computed by Robert Munafo, Jul 25 2010
STATUS
approved