login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169937
a(n) = binomial(m+n-1,n)^2 - binomial(m+n,n+1)*binomial(m+n-2,n-1) with m = 14.
4
1, 91, 3185, 63700, 866320, 8836464, 71954064, 488259720, 2848181700, 14620666060, 67255063876, 281248448936, 1081724803600, 3863302870000, 12914469594000, 40680579221100, 121443493851225, 345280521733875, 938920716995625, 2451077240157000, 6162708489537600
OFFSET
0,2
COMMENTS
13th column (and diagonal) of the triangle A001263. - Bruno Berselli, May 07 2012
REFERENCES
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=14.
LINKS
Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
FORMULA
a(n) = (1/13)*A010965(n+12)^2*(n+13)/(n+1). - Bruno Berselli, Nov 09 2011
a(n) = Product_{i=1..12} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 45997360927193/23100 - 201753552*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 16431564019/23100 - 72072*Pi^2. (End)
MAPLE
f:=m->[seq( binomial(m+n-1, n)^2-binomial(m+n, n+1)*binomial(m+n-2, n-1), n=0..20)]; f(14);
MATHEMATICA
Table[Binomial[13+n, n]^2-Binomial[14+n, n+1]Binomial[12+n, n-1], {n, 0, 20}] (* Harvey P. Dale, Nov 09 2011 *)
PROG
(Magma) [(1/13)*Binomial(n+12, 12)^2*(n+13)/(n+1): n in [0..20]]; // Bruno Berselli, Nov 09 2011
(PARI) a(n)=binomial(n+12, 12)^2*(n+13)/(n+1)/13 \\ Charles R Greathouse IV, Nov 09 2011
CROSSREFS
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Cf. A002378.
Sequence in context: A221738 A332913 A133416 * A378965 A047697 A096054
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 28 2010
STATUS
approved