The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140925 a(n) = binomial(m+n-1,n)^2 - binomial(m+n,n+1)*binomial(m+n-2,n-1) with m=12. 6
 1, 66, 1716, 26026, 273273, 2186184, 14158144, 77364144, 367479684, 1551580888, 5924217936, 20734762776, 67255063876, 203982391536, 582806832960, 1578435172600, 4073755482225, 10064572367850, 23896002230100, 54709268263650, 121141951155225, 260114319363600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of 2 X 10 matrices with elements in 0..n with each row and each column in nondecreasing order. 2,10,n can be permuted, see formula. 11th column (and diagonal) of the triangle A001263. - Bruno Berselli, May 07 2012 REFERENCES S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=12. - N. J. A. Sloane, Aug 28 2010. LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1). FORMULA (Empirical) Set p,q,r to n,10,2 (in any order) in s=p+q+r-1; a(n) = product {i in 0..r-1} (binomial(s,p+i)*i!/(s-i)^(r-i-1)). G.f.: (1 + x)*(1 + 44*x + 496*x^2 + 2024*x^3 + 3268*x^4 + 2024*x^5 + 496*x^6 + 44*x^7 + x^8)/(1 - x)^21. - Bruno Berselli, May 07 2012 a(n) = ((n+11)/(11*n+11))*binomial(n+10,10)^2. - Bruno Berselli, May 07 2012 a(n) = Product_{i=1..10} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016 From Amiram Eldar, Oct 19 2020: (Start) Sum_{n>=0} 1/a(n) = 186224135603/2352 - 8022300*Pi^2. Sum_{n>=0} (-1)^n/a(n) = 11550*Pi^2 - 114904889/1008. (End) MATHEMATICA Table[Binomial[11 + n, n]^2 - Binomial[12 + n, n + 1] Binomial[10 + n, n - 1], {n, 0, 21}] (* Bruno Berselli, May 07 2012 *) PROG (Maxima) makelist(coeff(taylor((1+x)*(1+44*x+496*x^2+2024*x^3+3268*x^4+2024*x^5+496*x^6+44*x^7+x^8)/(1-x)^21, x, 0, n), x, n), n, 0, 21); - Bruno Berselli, May 07 2012 (Magma) [((n+11)/(11*n+11))*Binomial(n+10, 10)^2: n in [0..21]]; // Bruno Berselli, May 07 2012 (PARI) a(n) = ((n/11+1)/(n+1))*binomial(n+10, 10)^2 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A001263, A002378, A134291, A140934. Sequence in context: A133318 A197645 A270847 * A269779 A279446 A271797 Adjacent sequences: A140922 A140923 A140924 * A140926 A140927 A140928 KEYWORD nonn,easy AUTHOR R. H. Hardin, Jul 05 2008 EXTENSIONS Edited by N. J. A. Sloane, Aug 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 07:43 EST 2023. Contains 367699 sequences. (Running on oeis4.)