|
|
A140925
|
|
a(n) = binomial(m+n-1,n)^2 - binomial(m+n,n+1)*binomial(m+n-2,n-1) with m=12.
|
|
6
|
|
|
1, 66, 1716, 26026, 273273, 2186184, 14158144, 77364144, 367479684, 1551580888, 5924217936, 20734762776, 67255063876, 203982391536, 582806832960, 1578435172600, 4073755482225, 10064572367850, 23896002230100, 54709268263650, 121141951155225, 260114319363600
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of 2 X 10 matrices with elements in 0..n with each row and each column in nondecreasing order. 2,10,n can be permuted, see formula.
|
|
REFERENCES
|
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=12. - N. J. A. Sloane, Aug 28 2010.
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
|
|
FORMULA
|
(Empirical) Set p,q,r to n,10,2 (in any order) in s=p+q+r-1; a(n) = product {i in 0..r-1} (binomial(s,p+i)*i!/(s-i)^(r-i-1)).
G.f.: (1 + x)*(1 + 44*x + 496*x^2 + 2024*x^3 + 3268*x^4 + 2024*x^5 + 496*x^6 + 44*x^7 + x^8)/(1 - x)^21. - Bruno Berselli, May 07 2012
a(n) = ((n+11)/(11*n+11))*binomial(n+10,10)^2. - Bruno Berselli, May 07 2012
Sum_{n>=0} 1/a(n) = 186224135603/2352 - 8022300*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 11550*Pi^2 - 114904889/1008. (End)
|
|
MATHEMATICA
|
Table[Binomial[11 + n, n]^2 - Binomial[12 + n, n + 1] Binomial[10 + n, n - 1], {n, 0, 21}] (* Bruno Berselli, May 07 2012 *)
|
|
PROG
|
(Maxima) makelist(coeff(taylor((1+x)*(1+44*x+496*x^2+2024*x^3+3268*x^4+2024*x^5+496*x^6+44*x^7+x^8)/(1-x)^21, x, 0, n), x, n), n, 0, 21); - Bruno Berselli, May 07 2012
(Magma) [((n+11)/(11*n+11))*Binomial(n+10, 10)^2: n in [0..21]]; // Bruno Berselli, May 07 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|