Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jun 05 2021 16:46:26
%S 1,0,1,0,1,1,1,1,3,1,3,8,6,6,1,16,35,38,20,10,1,96,211,213,134,50,15,
%T 1,675,1459,1479,915,385,105,21,1,5413,11584,11692,7324,3130,952,196,
%U 28,1,48800,103605,104364,65784,28764,9090,2100,336,36,1
%N A ménage triangle.
%D A. Kaufmann, Introduction à la combinatorique en vue des applications, p.188-189, Dunod, Paris, 1968. - _Philippe Deléham_, Apr 04 2014
%H Alois P. Heinz, <a href="/A156368/b156368.txt">Rows n = 0..140, flattened</a>
%F T(n, k) = Sum_{j=0..n} (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*(n-j)!.
%F T(n, 0) = A000271(n).
%F Sum_{k=0..n} T(n, k) = n!.
%F Equals A155856*A007318^{-1}.
%F G.f.: 1/(1 +x -x*y -x/(1 +x -x*y -x/(1 +x -x*y -2*x/(1 +x -x*y -2*x/(1 +x -x*y -3*x/(1 +x -x*y -3*x/(1 +x -x*y -4*x/(1 + ... (continued fraction).
%F G.f.: Sum_{n>=0} n! * x^n/(1 + (1-y)*x)^(2*n+1). - _Ira M. Gessel_, Jan 15 2013
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 1, 1;
%e 1, 1, 3, 1;
%e 3, 8, 6, 6, 1;
%e 16, 35, 38, 20, 10, 1;
%e 96, 211, 213, 134, 50, 15, 1;
%t T[n_,k_]:= Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[2*n-j, j]*(n-j)!, {j,0,n}];
%t Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 05 2021 *)
%o (Sage)
%o def A156368(n,k): return sum( (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*factorial(n-j) for j in (0..n) )
%o flatten([[A156368(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 05 2021
%Y Cf. A000142, A000271, A007318, A155856.
%K easy,nonn,tabl
%O 0,9
%A _Paul Barry_, Feb 08 2009