Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:45:41
%S 1,1,1,3,1,12,9,1,33,99,27,1,78,594,702,81,1,171,2718,8154,4617,243,1,
%T 360,10719,65232,96471,29160,729,1,741,38637,421713,1265139,1043199,
%U 180063,2187,1,1506,131472,2382318,12651390,21440862,10649232,1097874
%N Triangle of coefficients of p(n, x) where p(n, x) is defined as p(n, x) = (1-3*x)^(n+1)*PolyLog(-n, 3*x)/(3*x), read by rows.
%H G. C. Greubel, <a href="/A156366/b156366.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, k) = [x^k]( p(n, x) ), where p(n, x) is defined as p(n, x) = (1-3*x)^(n+1)*Sum_{j >= 0} ( (j+1)^n*(3*x)^j ), or p(n, x) = (1-3*x)^(n+1)* PolyLog(-n, 3*x)/(3*x).
%F From _G. C. Greubel_, Jan 02 2022: (Start)
%F T(n, k) = 3^k * Sum_{j=0..k} binomial(n+1, j)*(-1)^j*(k-j+1)^n.
%F T(n, k) = 3^k * A008292(n, k+1).
%F T(n, 0) = 1.
%F T(n, n-1) = 3^n, for n >= 1. (End)
%e Triangle begins as:
%e 1;
%e 1;
%e 1, 3;
%e 1, 12, 9;
%e 1, 33, 99, 27;
%e 1, 78, 594, 702, 81;
%e 1, 171, 2718, 8154, 4617, 243;
%e 1, 360, 10719, 65232, 96471, 29160, 729;
%e 1, 741, 38637, 421713, 1265139, 1043199, 180063, 2187;
%e 1, 1506, 131472, 2382318, 12651390, 21440862, 10649232, 1097874, 6561;
%t (* First program *)
%t p[x_, n_]:= (1-3*x)^(1+n)*PolyLog[-n, 3*x]/(3*x);
%t T[n_]:= CoefficientList[Series[p[x, n], {x,0,30}], x];
%t Table[T[n], {n,0,10}]//Flatten (* modified by _G. C. Greubel_, Jan 02 2022 *)
%t (* Second program *)
%t T[n_, k_]:= 3^k*Sum[(k-j+1)^n*Binomial[n+1, j]*(-1)^j, {j,0,k}];
%t Join[{1}, Table[T[n, k], {n, 10}, {k, 0, n-1}]]//Flatten (* _G. C. Greubel_, Jan 02 2022 *)
%o (Magma) T:= func< n,k | n eq 0 and k eq 0 select 1 else 3^k*(&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k]]) >;
%o [1] cat [T(n,k): k in [0..n-1], n in [0..10]]; // _G. C. Greubel_, Jan 02 2022
%o (Sage)
%o def T(n, k): return 3^k*sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k))
%o [1]+flatten([[T(n,k) for k in (0..n-1)] for n in (0..10)]) # _G. C. Greubel_, Jan 02 2022
%Y Cf. A000244, A008292.
%K nonn,tabf
%O 0,4
%A _Roger L. Bagula_, Feb 08 2009
%E Edited by _G. C. Greubel_, Jan 02 2022