Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Mar 25 2024 19:20:49
%S 1,3,-1,12,-8,1,60,-60,15,-1,360,-480,180,-24,1,2520,-4200,2100,-420,
%T 35,-1,20160,-40320,25200,-6720,840,-48,1,181440,-423360,317520,
%U -105840,17640,-1512,63,-1,1814400,-4838400,4233600
%N Coefficient triangle of generalized Laguerre polynomials n!*L(n,2,x) (rising powers of x).
%C The row polynomials s(n,x) := n!*L(n,2,x) = Sum_{m=0..n} a(n,m)*x^m have e.g.f. exp(-z*x/(1-z))/(1-z)^3. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} |A008297(n,m)|*(-x)^m, n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
%C This unsigned matrix is embedded in the matrix for n!*L(n,-2,-x). Introduce 0,0 to each unsigned row and then add 1,-1,1 to the array as the first two rows to generate n!*L(n,-2,-x). - _Tom Copeland_, Apr 20 2014
%C The unsigned n-th row reverse polynomial equals the numerator polynomial of the finite continued fraction 1 - x/(1 + (n+1)*x/(1 + n*x/(1 + n*x/(1 + ... + 2*x/(1 + 2*x/(1 + x/(1 + x/(1)))))))). Cf. A089231. The denominator polynomial of the continued fraction is the (n+1)-th row polynomial of A144084. An example is given below. - _Peter Bala_, Oct 06 2019
%H Indranil Ghosh, <a href="/A062139/b062139.txt">Rows 0..125, flattened</a>
%H Robert S. Maier, <a href="https://arxiv.org/abs/2308.10332">Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers</a>, arXiv:2308.10332 [math.CO], 2023. See p. 19.
%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>
%F T(n, m) = ((-1)^m)*n!*binomial(n+2, n-m)/m!.
%F E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^3), m >= 0.
%F n!*L(n,2,x) = (n+2)!*hypergeom([-n],[3],x)/2. - _Peter Luschny_, Apr 08 2015
%F From _Werner Schulte_, Mar 24 2024: (Start)
%F T(n, k) = (n+k+2) * T(n-1, k) - T(n-1, k-1) with initial values T(0, 0) = 1 and T(i, j) = 0 if j < 0 or j > i.
%F T = T^(-1), i.e., T is matrix inverse of T. (End)
%e Triangle begins:
%e 1;
%e 3, -1;
%e 12, -8, 1;
%e 60, -60, 15, -1;
%e 360, -480, 180, -24, 1;
%e 2520, -4200, 2100, -420, 35, -1;
%e ...
%e 2!*L(2,2,x) = 12 - 8*x + x^2.
%e Unsigned row 3 polynomial in reverse form as the numerator of a continued fraction: 1 - x/(1 + 4*x/(1 + 3*x/(1 + 3*x/(1 + 2*x/(1 + 2*x/(1 + x/(1 + x))))))) = (60*x^3 + 60*x^2 + 15*x + 1)/(24*x^4 + 96*x^3 + 72*x^2 + 16*x + 1). - _Peter Bala_, Oct 06 2019
%p with(PolynomialTools):
%p p := n -> (n+2)!*hypergeom([-n],[3],x)/2:
%p seq(CoefficientList(simplify(p(n)), x), n=0..9); # _Peter Luschny_, Apr 08 2015
%t Flatten[Table[((-1)^m)*n!*Binomial[n+2,n-m]/m!,{n,0,8},{m,0,n}]] (* _Indranil Ghosh_, Feb 24 2017 *)
%o (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(((-1)^k)*n!*binomial(n+2, n-k)/k!, ", ");); print(););} \\ _Michel Marcus_, May 06 2014
%o (PARI) row(n) = Vecrev(n!*pollaguerre(n, 2)); \\ _Michel Marcus_, Feb 06 2021
%o (Python)
%o import math
%o f=math.factorial
%o def C(n,r):return f(n)//f(r)//f(n-r)
%o i=0
%o for n in range(16):
%o for m in range(n+1):
%o i += 1
%o print(i,((-1)**m)*f(n)*C(n+2,n-m)//f(m)) # _Indranil Ghosh_, Feb 24 2017
%o (Python)
%o from functools import cache
%o @cache
%o def T(n, k):
%o if k < 0 or k > n: return 0
%o if k == n: return (-1)**n
%o return (n + k + 2) * T(n-1, k) - T(n-1, k-1)
%o for n in range(7): print([T(n,k) for k in range(n + 1)])
%o # _Peter Luschny_, Mar 25 2024
%Y For m=0..5 the (unsigned) columns give A001710, A005990, A005461, A062193-A062195. The row sums (signed) give A062197, the row sums (unsigned) give A052852.
%Y Cf. A021009, A062137-A062140, A066667, A089231, A144084.
%K sign,easy,tabl
%O 0,2
%A _Wolfdieter Lang_, Jun 19 2001