login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051546
Third unsigned column of triangle A051339.
2
0, 0, 1, 24, 431, 7155, 117454, 1961470, 33775244, 603682596, 11235811536, 218055250512, 4413843664416, 93156324734304, 2048591287486080, 46898664421553280, 1116592842912341760, 27618683992928743680
OFFSET
0,4
COMMENTS
From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=7) ~ exp(-x)/x^3*(1 - 24/x + 431/x^2 - 7155/x^3 + 117454/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)
REFERENCES
Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051339.
FORMULA
a(n) = A051339(n, 2)*(-1)^n; e.g.f.: (log(1-x))^2/(2*(1-x)^7).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,7)|, for n>=1. - Milan Janjic, Dec 21 2008
CROSSREFS
Cf. A001730 (m=0), A051545 (m=1) unsigned columns.
Sequence in context: A062193 A016268 A175199 * A209448 A264504 A081128
KEYWORD
easy,nonn
STATUS
approved