login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123510
Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.
6
1, 6, 42, 340, 3135, 32466, 373156, 4713192, 64877805, 966466270, 15487707246, 265617899196, 4853435351947, 94114052406570, 1930026941433480, 41728495237790416, 948549349736725401, 22613209058160908982, 564104540143144909810, 14694713818659640322340
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1/(1-x)^3)*exp(x/(1-x))*LaguerreL(2,-x/(1-x)), where LaguerreL(p,y) are the Laguerre polynomials.
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: n*a(n) = 2*n*(n+2)*a(n-1) - (n-1)*(n+1)*(n+2)*a(n-2).
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n + 9/4) / 2^(3/2) * (1 + 31/(48*sqrt(n))).
(End)
MATHEMATICA
max = 16; s = (1/(1-x)^3)*Exp[x/(1-x)]*LaguerreL[2, -x/(1-x)] + O[x]^(max+1); CoefficientList[s, x]*Range[0, max]! (* Jean-François Alcover, May 23 2016 *)
PROG
(PARI) m=30; v=concat([6, 42], vector(m-2)); for(n=3, m, v[n]=2*(n+2)*v[n-1]-(n^2 - 1)*((n+2)/n)*v[n-2]); concat([1], v) \\ G. C. Greubel, May 16 2018
(Magma) I:=[6, 42]; [1] cat [n le 2 select I[n] else 2*(n+2)*Self(n-1) - (n^2 -1)*((n+2)/n)*Self(n-2): n in [1..30]]; // G. C. Greubel, May 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 02 2006
EXTENSIONS
a(0)=1 prepended by G. C. Greubel, Oct 31 2017
More terms from G. C. Greubel, May 16 2018
STATUS
approved