login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123512
Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.
6
1, 10, 105, 1190, 14630, 194796, 2798670, 43204260, 713655855, 12564061510, 234896893231, 4648313235930, 97068707038940, 2133251854548920, 49215687006553740, 1189262114277026856, 30037396074996304365
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)).
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: n*a(n) = 2*n*(n+4)*a(n-1) - (n-1)*(n+3)*(n+4)*a(n-2).
a(n) ~ exp(2*sqrt(n)-n-1/2) * n^(n + 17/4) / (3*2^(7/2)) * (1 + 31/(48*sqrt(n))).
(End)
MATHEMATICA
CoefficientList[ Series[(1/(1 - x)^5)*Exp[x/(1 - x)]LaguerreL[4, -x/(1 - x)], {x, 0, 16}], x]*Range[0, 16]! (* Robert G. Wilson v, Oct 03 2006 *)
PROG
(PARI)
LaguerreL(n, v='x) = {
my(x='x+O('x^(n+1)), t='t);
subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v);
};
N=17; x='x+O('x^N); Vec(serlaplace((1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4, -x/(1-x)))) \\ Gheorghe Coserea, Oct 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 02 2006
EXTENSIONS
a(0)=1 prepended by Gheorghe Coserea, Oct 26 2017
STATUS
approved