login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.
6

%I #22 Nov 13 2017 09:12:26

%S 1,10,105,1190,14630,194796,2798670,43204260,713655855,12564061510,

%T 234896893231,4648313235930,97068707038940,2133251854548920,

%U 49215687006553740,1189262114277026856,30037396074996304365

%N Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

%H G. C. Greubel, <a href="/A123512/b123512.txt">Table of n, a(n) for n = 0..439</a>

%F E.g.f.: (1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)).

%F From _Vaclav Kotesovec_, Nov 13 2017: (Start)

%F Recurrence: n*a(n) = 2*n*(n+4)*a(n-1) - (n-1)*(n+3)*(n+4)*a(n-2).

%F a(n) ~ exp(2*sqrt(n)-n-1/2) * n^(n + 17/4) / (3*2^(7/2)) * (1 + 31/(48*sqrt(n))).

%F (End)

%t CoefficientList[ Series[(1/(1 - x)^5)*Exp[x/(1 - x)]LaguerreL[4, -x/(1 - x)], {x,0,16}], x]*Range[0, 16]! (* _Robert G. Wilson v_, Oct 03 2006 *)

%o (PARI)

%o LaguerreL(n,v='x) = {

%o my(x='x+O('x^(n+1)), t='t);

%o subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v);

%o };

%o N=17;x='x+O('x^N); Vec(serlaplace((1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)))) \\ _Gheorghe Coserea_, Oct 26 2017

%Y Cf.: A002720, A052852, A123510, A123511.

%K nonn

%O 0,2

%A _Karol A. Penson_, Oct 02 2006

%E a(0)=1 prepended by _Gheorghe Coserea_, Oct 26 2017