The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329433 Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments. 6
 1, 3, 1, 12, 6, 1, 147, 144, 60, 12, 1, 21612, 42336, 38376, 20808, 7350, 1728, 264, 24, 1, 467078547, 1829931264, 3451101120, 4148777664, 3552268752, 2294085888, 1154824416, 461895840, 148272828, 38314944, 7942320, 1306800, 167340, 16128, 1104, 48, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let f(x) = x^2 + 3, u(0,x) = 1, u(n,x) = f(u(n-1),x), and p(n,x) = u(n,sqrt(x)). Then the sequence (p(n,0)) = (1, 3, 12, 147, 21612, 467078547,... ) is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889. REFERENCES L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403. LINKS EXAMPLE Rows 0..4:   1;   3, 1;   12, 6, 1;   147, 144, 60, 12, 1;   21612, 42336, 38376, 20808, 7350, 1728, 264, 24, 1. Rows 0..4, the polynomials u(n,x):   1;   3 + x^2;   12 + 6 x^2 + x^4;   147 + 144 x^2 + 60 x^4 + 12 x^6 + x^8;   21612 + 42336 x^2 + 38376 x^4 + 20808 x^6 + 7350 x^8 + 1728 x^10 + 264 x^12 + 24 x^14 + x^16. MATHEMATICA f[x_] := x^2 + 3;  u[0, x_] := 1; u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]] Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329433 polynomials u(n, x) *) Table[CoefficientList[u[n, Sqrt[x], x], {n, 0, 5}]  (* A329433 array *) CROSSREFS Cf. A329429, A329430, A329431, A329432. Sequence in context: A127898 A078938 A135888 * A258245 A133366 A049458 Adjacent sequences:  A329430 A329431 A329432 * A329434 A329435 A329436 KEYWORD nonn,tabf AUTHOR Clark Kimberling, Nov 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 01:24 EST 2021. Contains 349617 sequences. (Running on oeis4.)