login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329429
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
8
1, 1, 1, 2, 2, 1, 5, 8, 8, 4, 1, 26, 80, 144, 168, 138, 80, 32, 8, 1, 677, 4160, 13888, 31776, 54792, 74624, 82432, 74944, 56472, 35296, 18208, 7664, 2580, 672, 128, 16, 1, 458330, 5632640, 36109952, 158572864, 531441232, 1439520512, 3264101376, 6342205824
OFFSET
0,4
COMMENTS
Let f(x) = x^2 + 1, u(0,x) = 1, u(n,x) = f(u(n-1,x)), and p(n,x) = u(n,sqrt(x)). Except for the first term, the sequence (p(n,0)) = (1, 1, 5, 26, 677, ...) is found in A003095 and A008318. This is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889.
REFERENCES
L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
FORMULA
p(n,0) = (1, 1, 2, 5, 26, 677, 458330, ...)
p(n,1) = (1, 2, 5, 26, 677, 458330, ...)
p(n,2) = (2, 5, 26, 677, 458330, ...)
p(n,5) = (5, 26, 677, 458330, ...)
p(n,26) = (26, 677, 458330, ...), etc.;
that is, p(n,p(k,0)) = p(n+k-2,0); there are similar identities for other sequences p(n,h).
EXAMPLE
Rows 0..4:
1;
1, 1;
2, 2, 1;
5, 8, 8, 4, 1;
26, 80, 144, 168, 138, 80, 32, 8, 1.
Rows 0..4, the polynomials u(n,x):
1,
1 + x^2,
2 + 2 x^2 + x^4,
5 + 8 x^2 + 8 x^4 + 4 x^6 + x^8,
26 + 80 x^2 + 144 x^4 + 168 x^6 + 138 x^8 + 80 x^10 + 32 x^12 + 8 x^14 + x^16.
MATHEMATICA
f[x_] := x^2 + 1; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329429 polynomials u(n, x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 7}] (* A329429 array *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Nov 13 2019
STATUS
approved