login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329436
Expansion of Sum_{k>=1} (-1 + Product_{j>=2} (1 + x^(k*j))).
3
0, 1, 1, 2, 2, 4, 3, 5, 6, 8, 7, 13, 10, 16, 18, 22, 21, 34, 29, 44, 45, 56, 56, 82, 78, 100, 109, 136, 137, 185, 181, 231, 247, 295, 317, 399, 404, 490, 533, 638, 669, 817, 853, 1020, 1108, 1276, 1371, 1638, 1728, 2017, 2186, 2519, 2702, 3153, 3371, 3885
OFFSET
1,4
COMMENTS
Inverse Moebius transform of A025147.
Number of uniform (constant multiplicity) partitions of n not containing 1, ranked by the odd terms of A072774. - Gus Wiseman, Dec 01 2023
FORMULA
G.f.: Sum_{k>=1} A025147(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A025147(d).
EXAMPLE
From Gus Wiseman, Dec 01 2023: (Start)
The a(2) = 1 through a(10) = 8 uniform partitions not containing 1:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(2,2) (3,2) (3,3) (4,3) (4,4) (5,4) (5,5)
(4,2) (5,2) (5,3) (6,3) (6,4)
(2,2,2) (6,2) (7,2) (7,3)
(2,2,2,2) (3,3,3) (8,2)
(4,3,2) (5,3,2)
(3,3,2,2)
(2,2,2,2,2)
(End)
MATHEMATICA
nmax = 56; CoefficientList[Series[Sum[-1 + Product[(1 + x^(k j)), {j, 2, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Length[Select[IntegerPartitions[n], FreeQ[#, 1]&&SameQ@@Length/@Split[#]&]], {n, 0, 30}] (* Gus Wiseman, Dec 01 2023 *)
CROSSREFS
The strict case is A025147.
The version allowing 1 is A047966.
The version requiring 1 is A097986.
Sequence in context: A094051 A159268 A058723 * A182577 A357189 A241450
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 13 2019
STATUS
approved