login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=1} (-1 + Product_{j>=2} (1 + x^(k*j))).
3

%I #8 Dec 01 2023 23:26:24

%S 0,1,1,2,2,4,3,5,6,8,7,13,10,16,18,22,21,34,29,44,45,56,56,82,78,100,

%T 109,136,137,185,181,231,247,295,317,399,404,490,533,638,669,817,853,

%U 1020,1108,1276,1371,1638,1728,2017,2186,2519,2702,3153,3371,3885

%N Expansion of Sum_{k>=1} (-1 + Product_{j>=2} (1 + x^(k*j))).

%C Inverse Moebius transform of A025147.

%C Number of uniform (constant multiplicity) partitions of n not containing 1, ranked by the odd terms of A072774. - _Gus Wiseman_, Dec 01 2023

%F G.f.: Sum_{k>=1} A025147(k) * x^k / (1 - x^k).

%F a(n) = Sum_{d|n} A025147(d).

%e From _Gus Wiseman_, Dec 01 2023: (Start)

%e The a(2) = 1 through a(10) = 8 uniform partitions not containing 1:

%e (2) (3) (4) (5) (6) (7) (8) (9) (10)

%e (2,2) (3,2) (3,3) (4,3) (4,4) (5,4) (5,5)

%e (4,2) (5,2) (5,3) (6,3) (6,4)

%e (2,2,2) (6,2) (7,2) (7,3)

%e (2,2,2,2) (3,3,3) (8,2)

%e (4,3,2) (5,3,2)

%e (3,3,2,2)

%e (2,2,2,2,2)

%e (End)

%t nmax = 56; CoefficientList[Series[Sum[-1 + Product[(1 + x^(k j)), {j, 2, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%t Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&SameQ@@Length/@Split[#]&]], {n,0,30}] (* _Gus Wiseman_, Dec 01 2023 *)

%Y The strict case is A025147.

%Y The version allowing 1 is A047966.

%Y The version requiring 1 is A097986.

%Y Cf. A023645, A047968, A072774, A096765, A329435, A329436, A367586.

%K nonn

%O 1,4

%A _Ilya Gutkovskiy_, Nov 13 2019