login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089592
For any prime p, define a sequence S_p: S_p(1) = p and S_p(n+1) is the least prime > S_p(n) that begins with the last digit of S_p(n). Let f(p) be the first member of S_p that is the digit reversal of the previous member. Sequence contains primes p that such that f(p) does not equal f(q) for any q < p.
0
2, 11, 17, 79, 107, 109, 709, 4003, 10009, 11003, 1000039, 1100009, 400000043, 1000000009, 150000000000007
OFFSET
1,1
COMMENTS
The corresponding values f(a(n)) are 9001, 31, 71, 97, 701, 70001, 907, 7*10^8+1, 90001, 30011, 7*10^9+1, 9000011, 9*10^22+1, 9*10^9+1, 7*10^14+51, 7*10^19+13, 9*10^46+7, 7*10^50+43, 9*10^60+227. p = 4*10^45-47 (between a(18) and a(19)) appears to be the first prime such that f(p) doesn't exist: the digit reversal doesn't occur < 10^300 and is unlikely to occur later. - David Wasserman, Oct 03 2005
FORMULA
Begin with any prime, continue with the next prime having same beginning digit as that of the last digit of the prime preceding until the first prime reversal is found.
EXAMPLE
In the sequence beginning with the prime 2, continue 23 31 101 103 307 701 1009 9001 . . . . [A061448]. The first occurrence of a prime reversal beginning with the prime 2 is 1009 and 9001. This is a different first occurrence prime reversal than that found in the sequence beginning with 11 which continues to 13 31.
CROSSREFS
Cf. A061448.
Sequence in context: A217306 A106981 A176985 * A106982 A347600 A043461
KEYWORD
nonn,base,less
AUTHOR
Enoch Haga, Dec 29 2003
EXTENSIONS
More terms from David Wasserman, Oct 03 2005
Incorrect terms removed by Charles R Greathouse IV, Nov 21 2014
STATUS
approved