login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211232
Irregular triangle read by rows: T(n,k) is the k-th generalized Eulerian number of order n and degree 2, for n >= 1 (the rows start at k=1).
4
1, 2, 1, 4, 1, 1, 7, 0, -7, -1, 1, 12, -12, -56, -12, 12, 1, 1, 21, -67, -284, 0, 284, 67, -21, -1, 1, 38, -273, -1170, 753, 3408, 753, -1170, -273, 38, 1, 1, 71, -982, -4241, 8562, 29055, 0, -29055, -8562, 4241, 982, -71, -1, 1, 136, -3314, -13888, 66335, 199616, -106113, -464880, -106113, 199616, 66335, -13888, -3314, 136, 1
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1601 (rows 1..40)
D. H. Lehmer, Generalized Eulerian numbers, J. Combin. Theory Ser.A 32 (1982), no. 2, 195-215. MR0654621 (83k:10026).
FORMULA
From Andrew Howroyd, May 18 2020: (Start)
T(n,k) = k*T(n-1,k) - (n-k)*T(n-1,k-1) - (2*n-k)*T(n-1,k-2) for n > 1.
A047681(n) = Sum_{k>=1} T(2*n, k).
(End)
EXAMPLE
Triangle begins
1, 2;
1, 4, 1;
1, 7, 0, -7, -1;
1, 12, -12, -56, -12, 12, 1;
1, 21, -67, -284, 0, 284, 67, -21, -1;
1, 38, -273, -1170, 753, 3408, 753, -1170, -273, 38, 1;
...
PROG
(PARI)
T(n, r=2)={my(R=vector(n)); R[1]=[1..r]; for(n=2, n, my(u=R[n-1]); R[n]=vector(r*n-1, k, sum(j=0, r, (k - j*n)*if(k>j && k-j<=#u, u[k-j], 0)))); R}
{ my(A=T(7)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, May 18 2020
CROSSREFS
Row sums of even rows are A047681; row sums of odd rows are zero for n > 1.
Sequence in context: A105260 A099510 A348593 * A137633 A168533 A191314
KEYWORD
sign,tabf
AUTHOR
N. J. A. Sloane, Apr 05 2012
EXTENSIONS
Terms a(38) and beyond from Andrew Howroyd, May 18 2020
STATUS
approved