login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186505 Antidiagonal sums of triangle A186084. 3
1, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 8, 9, 14, 18, 25, 34, 46, 64, 86, 119, 162, 222, 304, 416, 571, 780, 1071, 1466, 2010, 2754, 3775, 5175, 7092, 9724, 13329, 18274, 25052, 34347, 47091, 64562, 88522, 121369, 166411, 228168, 312848, 428959, 588163 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Triangle A186084 is the number of 1-dimensional sandpiles with n grains and base length k.
The g.f. T(x,y) of triangle A186084 satisfies: T(x,y) = 1/(1 - x*y - x^3*y^2*T(x,x*y)); therefore, the g.f. of this sequence is T(x,x).
LINKS
FORMULA
G.f.: (1 - x/(1 - 1/B(x))))/x^3 where B(x) equals the g.f. of the row sums of triangle A186084.
G.f.: 1/(1-x^2 - x^5/(1-x^3 - x^7/(1-x^4 - x^9/(1-x^5 - x^11/(1-x^6 - x^13/(1-...)))))) (continued fraction).
G.f.: 1/(1-x^2/(1-x^3/(1-x^7/(1-x^4/(1-x^5/(1-x^11/(1-x^6/(1 -x^7/(1-x^15/(1-...)))))))))) (continued fraction).
G.f.: 1/x^3 - (Q(0) + 1)/x^2, where Q(k)= 1/x^(k+1) - 1 - 1/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 07 2013
a(n) ~ c * d^n, where d = 1.3712018040437285..., c = 0.154355235026898... . - Vaclav Kotesovec, Sep 10 2014
EXAMPLE
G.f.: 1 + x^2 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 4*x^10 +...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0),
`if`(n<0 or i<1, 0, expand(x*add(b(n-i, i+j), j=-1..1)) ))
end:
a:= n-> add(coeff(b(n-k, 1), x, k), k=0..n):
seq(a(n), n=0..70); # Alois P. Heinz, Jul 24 2013
MATHEMATICA
m = 100;
f[i_] := If[i == 0, 1, -x^(2i+3)];
g[i_] := 1 - x^(i+2);
ContinuedFractionK[f[i], g[i], {i, 0, Sqrt[m] // Ceiling}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Oct 14 2019, after Sergei N. Gladkovskii *)
PROG
(PARI) {a(n)=local(Txy=1+x*y); for(i=1, n, Txy=1/(1-x*y-x^3*y^2*subst(Txy, y, x*y+x*O(x^n)))); polcoeff(subst(Txy, y, x), n, x)}
(PARI) N = 66; x = 'x + O('x^N);
Q(k) = if(k>N, 1, 1/x^(k+1) - 1 - 1/Q(k+1) );
gf = 1/x^3 - (Q(0) + 1)/x^2;
Vec(gf) \\ Joerg Arndt, May 07 2013
CROSSREFS
Sequence in context: A240011 A211228 A338463 * A228693 A116676 A240575
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 23 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 00:12 EST 2023. Contains 367565 sequences. (Running on oeis4.)