OFFSET
0,3
COMMENTS
Row lengths are given by Pascal's triangle (cf. A007318), seen as flattened sequence, or for n > 0: length of n-th row = A007318(A003056(n-1),A002262(n-1));
1 <= i < j <= length of n-th row: A023416(T(n,i)) = A023416(T(n,j)), A000120(T(n,i)) = A000120(T(n,j)) and A070939(T(n,i)) = A070939(T(n,j));
the table provides a permutation of the natural numbers when seen as flattened sequence.
This sequence can be seen as an irregular triangle S(i,k) where row 0 = {1}, row n = { m = 2^(n-1)..2^n - 1 } sorted according to omega(A019565(m)), where omega = A001221. Under this arrangement, the rows can be further subdivided into segments of m with the same omega(m), which align with the original definition's triangle T. - Michael De Vlieger, Jan 03 2025
LINKS
Reinhard Zumkeller, Rows n = 0..78 of triangle, flattened - all terms < 2^12
Reinhard Zumkeller, Illustration of initial terms
Michael De Vlieger, Log log scatterplot of a(n), n = 0..2^21-1.
Michael De Vlieger, Fan style binary tree of a(n), n = 0..8192, i.e., rows 0..12, with a color function associated with (a(n) mod 2) / 2^floor(log_2 n) that illustrates the relationship with Pascal's triangle.
FORMULA
EXAMPLE
See link.
MATHEMATICA
{{0}}~Join~Table[SortBy[Range[2^n, 2^(n + 1) - 1], DigitCount[#, 2, 1] &], {n, 0, 8}] // Flatten (* Michael De Vlieger, Jan 03 2025 *)
PROG
(Haskell)
import List (elemIndices)
a187769 n k = a187769_tabf !! n !! k
a187769_row n = a187769_tabf !! n
a187769_tabf = [0] : [elemIndices (b, len - b) $
takeWhile ((<= len) . uncurry (+)) $ zip a000120_list a023416_list |
len <- [1 ..], b <- [1 .. len]]
a187769_list = concat a187769_tabf
CROSSREFS
KEYWORD
nonn,base,tabf
AUTHOR
Reinhard Zumkeller, Jan 05 2013
STATUS
approved