This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196407 Decimal expansion of the least positive number x satisfying e^(-x)=2*sin(x). 6
 3, 5, 7, 3, 2, 7, 4, 1, 1, 3, 2, 2, 5, 5, 5, 4, 8, 0, 8, 3, 1, 4, 2, 4, 6, 7, 4, 8, 1, 2, 1, 1, 2, 3, 0, 9, 7, 1, 2, 8, 2, 7, 8, 2, 2, 4, 8, 3, 0, 5, 6, 6, 1, 0, 1, 8, 3, 6, 4, 3, 0, 8, 6, 0, 7, 7, 5, 4, 3, 8, 0, 5, 1, 4, 6, 5, 6, 3, 9, 8, 4, 0, 4, 3, 7, 5, 8, 8, 0, 5, 0, 8, 3, 9, 1, 8, 4, 7, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE x=0.3573274113225554808314246748121123097128278224830566... MATHEMATICA Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}] t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* Cf. A069997 *) t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196407 *) t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196408 *) t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196409 *) t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196462 *) t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196463 *) CROSSREFS Cf. A196396, A196401. Sequence in context: A263792 A263411 A121573 * A156030 A255562 A130140 Adjacent sequences:  A196404 A196405 A196406 * A196408 A196409 A196410 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:08 EST 2018. Contains 318023 sequences. (Running on oeis4.)