login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196407
Decimal expansion of the least positive number x satisfying e^(-x)=2*sin(x).
6
3, 5, 7, 3, 2, 7, 4, 1, 1, 3, 2, 2, 5, 5, 5, 4, 8, 0, 8, 3, 1, 4, 2, 4, 6, 7, 4, 8, 1, 2, 1, 1, 2, 3, 0, 9, 7, 1, 2, 8, 2, 7, 8, 2, 2, 4, 8, 3, 0, 5, 6, 6, 1, 0, 1, 8, 3, 6, 4, 3, 0, 8, 6, 0, 7, 7, 5, 4, 3, 8, 0, 5, 1, 4, 6, 5, 6, 3, 9, 8, 4, 0, 4, 3, 7, 5, 8, 8, 0, 5, 0, 8, 3, 9, 1, 8, 4, 7, 9, 1
OFFSET
0,1
EXAMPLE
x=0.3573274113225554808314246748121123097128278224830566...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
CROSSREFS
Sequence in context: A379050 A351463 A121573 * A156030 A338974 A255562
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved