login
A196409
Decimal expansion of the least positive number x satisfying e^(-x)=4*sin(x).
5
2, 0, 5, 0, 8, 0, 0, 4, 4, 5, 3, 9, 2, 9, 1, 6, 4, 4, 4, 5, 6, 0, 5, 1, 2, 9, 0, 8, 9, 3, 4, 7, 2, 3, 6, 2, 4, 7, 6, 2, 0, 8, 2, 0, 9, 1, 7, 7, 7, 1, 3, 6, 9, 6, 5, 8, 7, 3, 3, 5, 7, 9, 0, 1, 4, 5, 5, 8, 2, 8, 0, 3, 8, 1, 0, 9, 5, 8, 6, 4, 0, 4, 8, 5, 6, 3, 1, 3, 5, 5, 4, 7, 8, 3, 5, 7, 2, 3, 3, 2
OFFSET
0,1
EXAMPLE
x=0.205080044539291644456051290893472362476208209177713696...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
CROSSREFS
Sequence in context: A104035 A340592 A326831 * A369909 A326830 A115333
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved