login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196403
Decimal expansion of the least positive number x satisfying e^(-x)=3*cos(x).
6
1, 4, 9, 6, 0, 5, 6, 1, 3, 0, 5, 8, 3, 6, 2, 2, 6, 6, 7, 2, 6, 9, 1, 8, 5, 1, 2, 4, 3, 5, 1, 3, 9, 7, 1, 1, 2, 5, 3, 4, 6, 1, 7, 7, 9, 9, 3, 5, 1, 7, 1, 2, 9, 3, 4, 6, 1, 9, 6, 1, 9, 6, 7, 9, 4, 8, 0, 2, 6, 2, 6, 9, 0, 4, 0, 6, 5, 3, 3, 7, 8, 5, 4, 7, 2, 8, 8, 9, 5, 8, 4, 0, 7, 4, 4, 6, 7, 6, 4, 0
OFFSET
1,2
EXAMPLE
x=1.496056130583622667269185124351397112534617799...
MATHEMATICA
Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100];
RealDigits[t] (* A196401 *)
t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196402 *)
t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196403 *)
t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196404 *)
t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196405 *)
t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196406 *)
CROSSREFS
Cf. A196401.
Sequence in context: A365725 A218358 A340127 * A238557 A271181 A338146
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved