|
|
A059523
|
|
Number of n-element unlabeled ordered T_0-antichains without isolated vertices; number of T_1-hypergraphs (without empty edge and without multiple edges) on n labeled vertices.
|
|
16
|
|
|
1, 2, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..8.
V. Jovovic, T_1-hyper graphs on a labeled 3-set
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
|
|
FORMULA
|
a(n) = A059052(n)/2.
|
|
EXAMPLE
|
Number of k-element T_1-hipergraphs (without empty edge and without multiple edges) on 3 labeled vertices is
C(7,k)-6*C(5,k)+6*C(4,k)+3*C(3,k)-6*C(2,k)+2*C(1,k),k=0..7; so a(3)=2+11+15+7+1=36=2^7-6*2^5+6*2^4+3*2^3-6*2^2+2*2.
|
|
CROSSREFS
|
Cf. A003465, A059201, A059052, A326961.
Sequence in context: A131657 A298993 A267345 * A038623 A001121 A202711
Adjacent sequences: A059520 A059521 A059522 * A059524 A059525 A059526
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladeta Jovovic and Goran Kilibarda, Jan 20 2001; revised Jun 03 2004
|
|
STATUS
|
approved
|
|
|
|