|
|
A047552
|
|
Numbers that are congruent to {2, 6, 7} mod 8.
|
|
1
|
|
|
2, 6, 7, 10, 14, 15, 18, 22, 23, 26, 30, 31, 34, 38, 39, 42, 46, 47, 50, 54, 55, 58, 62, 63, 66, 70, 71, 74, 78, 79, 82, 86, 87, 90, 94, 95, 98, 102, 103, 106, 110, 111, 114, 118, 119, 122, 126, 127, 130, 134, 135, 138, 142, 143, 146, 150, 151, 154, 158, 159
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
|
|
FORMULA
|
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4).
G.f.: x*(x^3 + x^2 + 4*x + 2)/(x^4 - x^3 - x + 1). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-3-6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-2, a(3k-2) = 8k-6. (End)
|
|
MAPLE
|
A047552:=n->(24*n-3-6*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047552(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 1, -1}, {2, 6, 7, 10}, 50] (* G. C. Greubel, May 29 2016 *)
Select[Range[200], MemberQ[{2, 6, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Aug 05 2018 *)
|
|
PROG
|
(Magma) [n : n in [0..150] | n mod 8 in [2, 6, 7]]; // Wesley Ivan Hurt, Jun 10 2016
|
|
CROSSREFS
|
Sequence in context: A180626 A061943 A029507 * A287453 A287449 A287688
Adjacent sequences: A047549 A047550 A047551 * A047553 A047554 A047555
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|