OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x^2*(2+4*x+x^2+x^3) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-5-i^(2*n)+(1-2*i)*i^(-n)+(1+2*i)*i^n)/4 where i=sqrt(-1).
E.g.f.: (2 - 2*sin(x) + cos(x) + (4*x - 2)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = (8-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 21 2021
MAPLE
A047553:=n->(8*n-5-I^(2*n)+(1-2*I)*I^(-n)+(1+2*I)*I^n)/4: seq(A047553(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 2, 6, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Aug 09 2013 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved