login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A047553
Numbers that are congruent to {0, 2, 6, 7} mod 8.
1
0, 2, 6, 7, 8, 10, 14, 15, 16, 18, 22, 23, 24, 26, 30, 31, 32, 34, 38, 39, 40, 42, 46, 47, 48, 50, 54, 55, 56, 58, 62, 63, 64, 66, 70, 71, 72, 74, 78, 79, 80, 82, 86, 87, 88, 90, 94, 95, 96, 98, 102, 103, 104, 106, 110, 111, 112, 114, 118, 119, 120, 122, 126
OFFSET
1,2
FORMULA
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x^2*(2+4*x+x^2+x^3) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-5-i^(2*n)+(1-2*i)*i^(-n)+(1+2*i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047524(k), a(2k-1) = A047451(k). (End)
E.g.f.: (2 - 2*sin(x) + cos(x) + (4*x - 2)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = (8-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 21 2021
MAPLE
A047553:=n->(8*n-5-I^(2*n)+(1-2*I)*I^(-n)+(1+2*I)*I^n)/4: seq(A047553(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 2, 6, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Aug 09 2013 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
Sequence in context: A028735 A267541 A325465 * A139418 A190212 A327179
KEYWORD
nonn,easy
STATUS
approved