login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267541 Expansion of (2 + 4*x + x^2 + x^3 + 2*x^4 + x^5)/(1 - x - x^5 + x^6). 4
2, 6, 7, 8, 10, 13, 17, 18, 19, 21, 24, 28, 29, 30, 32, 35, 39, 40, 41, 43, 46, 50, 51, 52, 54, 57, 61, 62, 63, 65, 68, 72, 73, 74, 76, 79, 83, 84, 85, 87, 90, 94, 95, 96, 98, 101, 105, 106, 107, 109, 112, 116, 117, 118, 120, 123, 127, 128, 129, 131, 134, 138, 139, 140 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Also, numbers that are congruent to {2, 6, 7, 8, 10} mod 11.
(m^k+1)/11 is a nonnegative integer when
. m is a member of this sequence and k is an odd multiple of 5 (A017329),
. m is a member of A017509 and k is odd but not multiple of 5 (A045572).
If k is even, (m^k+1)/11 is never an integer.
The product of two terms does not belong to the sequence.
LINKS
FORMULA
G.f.: (2 + 4*x + x^2 + x^3 + 2*x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(-n) = -A267755(n-1).
EXAMPLE
From the linear recurrence:
(-A267755) ..., -12, -9, -5, -4, -3, -1, 2, 6, 7, 8, 10, 13, ... (A267541)
MAPLE
gf := (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4)): deg := 64: series(gf, x, deg): seq(coeff(%, x, n), n=0..deg-1); # Peter Luschny, Jan 19 2016
MATHEMATICA
CoefficientList[Series[(2 + 4 x + x^2 + x^3 + 2 x^4 + x^5)/(1 - x - x^5 + x^6), {x, 0, 70}], x]
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {2, 6, 7, 8, 10, 13}, 70]
Select[Range[150], MemberQ[{2, 6, 7, 8, 10}, Mod[#, 11]]&]
PROG
(PARI) Vec((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)+O(x^70))
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)));
(Sage)
gf = (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4))
print(taylor(gf, x, 0, 63).list()) # Peter Luschny, Jan 19 2016
CROSSREFS
Cf. A088225: numbers congruent to {2,6,7,8} mod 11.
Sequence in context: A355160 A343719 A028735 * A325465 A047553 A139418
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 16:32 EDT 2024. Contains 373503 sequences. (Running on oeis4.)