OFFSET
0,1
COMMENTS
Also, numbers that are congruent to {2, 6, 7, 8, 10} mod 11.
(m^k+1)/11 is a nonnegative integer when
. m is a member of this sequence and k is an odd multiple of 5 (A017329),
If k is even, (m^k+1)/11 is never an integer.
The product of two terms does not belong to the sequence.
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
FORMULA
G.f.: (2 + 4*x + x^2 + x^3 + 2*x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(-n) = -A267755(n-1).
EXAMPLE
MAPLE
gf := (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4)): deg := 64: series(gf, x, deg): seq(coeff(%, x, n), n=0..deg-1); # Peter Luschny, Jan 19 2016
MATHEMATICA
CoefficientList[Series[(2 + 4 x + x^2 + x^3 + 2 x^4 + x^5)/(1 - x - x^5 + x^6), {x, 0, 70}], x]
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {2, 6, 7, 8, 10, 13}, 70]
Select[Range[150], MemberQ[{2, 6, 7, 8, 10}, Mod[#, 11]]&]
PROG
(PARI) Vec((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)+O(x^70))
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((2+4*x+x^2+x^3+2*x^4+x^5)/(1-x-x^5+x^6)));
(Sage)
gf = (2+4*x+x^2+x^3+2*x^4+x^5)/((1-x)^2*(1+x+x^2+x^3+ x^4))
print(taylor(gf, x, 0, 63).list()) # Peter Luschny, Jan 19 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 16 2016
STATUS
approved