login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267543
Primes p such that 3*p+1 is divisible by the sum of digits of 2*p+1.
2
5, 53, 191, 293, 317, 557, 569, 701, 821, 827, 1061, 1193, 1373, 1451, 1487, 1733, 1889, 1913, 2081, 2207, 2273, 2357, 2633, 2663, 2711, 2729, 3533, 3581, 3989, 4073, 4229, 4253, 4463, 4931, 5021, 5231, 5333, 5399, 5417, 5693, 5861, 6029, 6101, 6113, 6869, 7121, 7253, 7283, 7559, 7673
OFFSET
1,1
COMMENTS
All terms among the first 10^10 primes equal 5 mod 6 (verified using PARI).
From Altug Alkan, Apr 07 2016: (Start)
Proof is easy. All terms are congruent to 5 mod 6. If n > 2, prime(n) mod 6 can be 1 or 5. If p is prime that is congruent to 1 mod 6, then p is the form of 3*k+1. If there is a number of the form 3*k+1, its sum of digits is also must be of the form 3*t+1. At this point, 3*p+1 is the form of 3*(3*k+1)+1 = 9*k+4 and sum of digits of 2*p+1 is the form of 2*(3*t+1)+1=6*t+3. Since 9*k+4 is never divisible by 3*(2*t+1), there is no member that is congruent to 1 mod 6 in this sequence. So sequence contains only the primes which are congruent to 5 mod 6. (End)
LINKS
EXAMPLE
For p=5, we have 3*5+1=16 and the sum of digits of 2*5+1=11 is 2; since 16 is divisible by 2, 5 is a term.
MATHEMATICA
Select[Prime[Range[2000]], Divisible[3*#+1, Total[IntegerDigits[2*#+1]]]&]
PROG
(PARI) forprime(x=2, 10000, (3*x+1)%sumdigits(2*x+1)==0 && print1(x", "))
CROSSREFS
Cf. A000040 (prime numbers), A007953 (sum of digits), A267542 (related sequence).
Sequence in context: A212820 A094849 A094852 * A058867 A058869 A054342
KEYWORD
nonn,base
AUTHOR
Waldemar Puszkarz, Jan 16 2016
STATUS
approved