login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047551
Numbers that are congruent to {0, 1, 6, 7} mod 8.
2
0, 1, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 30, 31, 32, 33, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80, 81, 86, 87, 88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 110, 111, 112, 113, 118, 119, 120, 121, 126
OFFSET
1,3
FORMULA
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=6 and b(k)=2^(k+1) for k>1. - Philippe Deléham, Oct 19 2011
a(n) = 2n - A010873(n+1). - Wesley Ivan Hurt, Jul 07 2013
G.f.: x^2*(1+5*x+x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 14 2013
From Wesley Ivan Hurt, May 29 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (4*n-3-i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/2 where i=sqrt(-1).
a(2k) = A047522(k), a(2k-1) = A047451(k). (End)
E.g.f.: 1 - sin(x) + cos(x) + (2*x - 1)*sinh(x) + 2*(x - 1)*cosh(x). - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + (5-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
MAPLE
A047551:=n->(4*n-3-I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/2: seq(A047551(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Table[(4n-3-I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/2, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved