login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047550
Numbers that are congruent to {5, 7} mod 8.
7
5, 7, 13, 15, 21, 23, 29, 31, 37, 39, 45, 47, 53, 55, 61, 63, 69, 71, 77, 79, 85, 87, 93, 95, 101, 103, 109, 111, 117, 119, 125, 127, 133, 135, 141, 143, 149, 151, 157, 159, 165, 167, 173, 175, 181, 183, 189, 191, 197, 199, 205, 207, 213, 215, 221, 223, 229, 231, 237, 239, 245, 247, 253, 255, 261
OFFSET
1,1
FORMULA
a(n) = 8*n-a(n-1)-4 (with a(1)=5). - Vincenzo Librandi, Aug 06 2010
a(n) = 4*n-(-1)^n. - Rolf Pleisch, Nov 02 2010
a(1)=5, a(2)=7, a(3)=13; for n>3, a(n) = a(n-1)+a(n-2)-a(n-3). - Harvey P. Dale, Jun 04 2012
G.f.: x*(5+2*x+x^2) / ((1-x)^2*(1+x)). - Colin Barker, Aug 26 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 - sqrt(2)*log(sqrt(2)+1)/4. - Amiram Eldar, Dec 19 2021
E.g.f.: 1 + 4*x*exp(x) - exp(-x). - David Lovler, Sep 02 2022
MAPLE
A047550:=n->4*n-(-1)^n; seq(A047550(n), n=1..100); # Wesley Ivan Hurt, Mar 31 2014
MATHEMATICA
With[{r8=8*Range[0, 40]}, Sort[Join[r8+5, r8+7]]] (* or *) LinearRecurrence[ {1, 1, -1}, {5, 7, 13}, 80] (* Harvey P. Dale, Jun 04 2012 *)
Table[4 n - (-1)^n, {n, 100}] (* Wesley Ivan Hurt, Mar 31 2014 *)
PROG
(PARI) Vec(x*(5+2*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Aug 26 2016
CROSSREFS
Union of A004770 and A004771.
Sequence in context: A055052 A314314 A314315 * A179194 A314316 A314317
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Aug 06 2010
STATUS
approved