login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {5, 7} mod 8.
7

%I #37 Sep 03 2022 08:50:21

%S 5,7,13,15,21,23,29,31,37,39,45,47,53,55,61,63,69,71,77,79,85,87,93,

%T 95,101,103,109,111,117,119,125,127,133,135,141,143,149,151,157,159,

%U 165,167,173,175,181,183,189,191,197,199,205,207,213,215,221,223,229,231,237,239,245,247,253,255,261

%N Numbers that are congruent to {5, 7} mod 8.

%H Colin Barker, <a href="/A047550/b047550.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 8*n-a(n-1)-4 (with a(1)=5). - _Vincenzo Librandi_, Aug 06 2010

%F a(n) = 4*n-(-1)^n. - _Rolf Pleisch_, Nov 02 2010

%F a(1)=5, a(2)=7, a(3)=13; for n>3, a(n) = a(n-1)+a(n-2)-a(n-3). - _Harvey P. Dale_, Jun 04 2012

%F G.f.: x*(5+2*x+x^2) / ((1-x)^2*(1+x)). - _Colin Barker_, Aug 26 2016

%F Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 - sqrt(2)*log(sqrt(2)+1)/4. - _Amiram Eldar_, Dec 19 2021

%F E.g.f.: 1 + 4*x*exp(x) - exp(-x). - _David Lovler_, Sep 02 2022

%p A047550:=n->4*n-(-1)^n; seq(A047550(n), n=1..100); # _Wesley Ivan Hurt_, Mar 31 2014

%t With[{r8=8*Range[0,40]},Sort[Join[r8+5,r8+7]]] (* or *) LinearRecurrence[ {1,1,-1},{5,7,13},80] (* _Harvey P. Dale_, Jun 04 2012 *)

%t Table[4 n - (-1)^n, {n, 100}] (* _Wesley Ivan Hurt_, Mar 31 2014 *)

%o (PARI) Vec(x*(5+2*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ _Colin Barker_, Aug 26 2016

%Y Union of A004770 and A004771.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Vincenzo Librandi_, Aug 06 2010