login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047492
Numbers that are congruent to {0, 4, 5, 7} mod 8.
1
0, 4, 5, 7, 8, 12, 13, 15, 16, 20, 21, 23, 24, 28, 29, 31, 32, 36, 37, 39, 40, 44, 45, 47, 48, 52, 53, 55, 56, 60, 61, 63, 64, 68, 69, 71, 72, 76, 77, 79, 80, 84, 85, 87, 88, 92, 93, 95, 96, 100, 101, 103, 104, 108, 109, 111, 112, 116, 117, 119, 120, 124
OFFSET
1,2
FORMULA
G.f.: x^2*(4+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2*n+(1+i)*(2*i-2+(1-i)*i^(2*n)-i^(-n)+i^(1+n))/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047615(k). (End)
E.g.f.: (2 - sin(x) - cos(x) + (4*x - 3)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4 - Pi/8. - Amiram Eldar, Dec 23 2021
MAPLE
A047492:=n->2*n+(1+I)*(2*I-2+(1-I)*I^(2*n)-I^(-n)+I^(1+n))/4: seq(A047492(n), n=1..100); # Wesley Ivan Hurt, May 26 2016
MATHEMATICA
Table[2n+(1+I)*(2*I-2+(1-I)*I^(2n)-I^(-n)+I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 26 2016 *)
a[n_] := 1 + n + Floor[n/2] + 2 Floor[(n - 2)/4];
Table[a[n], {n, 1, 62}] (* Peter Luschny, Dec 23 2021 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 4, 5, 7]]; // Wesley Ivan Hurt, May 26 2016
CROSSREFS
Sequence in context: A049649 A050575 A081452 * A240161 A023629 A331840
KEYWORD
nonn,easy
STATUS
approved