login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047488 Numbers that are congruent to {0, 2, 3, 5, 7} mod 8. 1
0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 19, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 43, 45, 47, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 75, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).

FORMULA

G.f.: x^2*(2+x+2*x^2+2*x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)). [Colin Barker, May 14 2012]

From Wesley Ivan Hurt, Jul 31 2016: (Start)

a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.

a(n) = (40*n - 35 - 2*(n mod 5) - 2*((n+1) mod 5) + 3*((n+2) mod 5) - 2*((n+3) mod 5) + 3*((n+4) mod 5))/25.

a(5k) = 8k-1, a(5k-1) = 8k-3, a(5k-2) = 8k-5, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)

MAPLE

A047488:=n->8*floor(n/5)+[(0, 2, 3, 5, 7)][(n mod 5)+1]: seq(A047488(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016

MATHEMATICA

Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Mar 20 2011 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [0, 2, 3, 5, 7]]; // Wesley Ivan Hurt, Jul 31 2016

CROSSREFS

Different from A022342.

Sequence in context: A185596 A298863 A184588 * A295282 A066093 A022342

Adjacent sequences:  A047485 A047486 A047487 * A047489 A047490 A047491

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 00:50 EDT 2018. Contains 316252 sequences. (Running on oeis4.)