login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086799
Replace all trailing 0's with 1's in binary representation of n.
14
1, 3, 3, 7, 5, 7, 7, 15, 9, 11, 11, 15, 13, 15, 15, 31, 17, 19, 19, 23, 21, 23, 23, 31, 25, 27, 27, 31, 29, 31, 31, 63, 33, 35, 35, 39, 37, 39, 39, 47, 41, 43, 43, 47, 45, 47, 47, 63, 49, 51, 51, 55, 53, 55, 55, 63, 57, 59, 59, 63, 61, 63, 63, 127, 65, 67, 67, 71, 69, 71
OFFSET
1,2
COMMENTS
a(k+1) = smallest number greater than k having in its binary representation exactly one 1 more than k has; A000120(a(n)) = A063787(n). - Reinhard Zumkeller, Jul 31 2010
a(n) is the least m >= n-1 such that the Hamming distance D(n-1,m) = 1. - Vladimir Shevelev, Apr 18 2012
LINKS
Eric Weisstein's World of Mathematics, Binary Carry Sequence
Eric Weisstein's World of Mathematics, Odd Part
FORMULA
a(n) = n + 2^A007814(n) - 1.
a(n) is odd; a(n) = n iff n is odd.
a(a(n)) = a(n); A007814(a(n)) = a(n); A000265(a(n)) = a(n).
A023416(a(n)) = A023416(n) - A007814(n) = A086784(n).
A000120(a(n)) = A000120(n) + A007814(n).
a(2^n) = a(A000079(n)) = 2*2^n - 1 = A000051(n+1).
a(n) = if n is odd then n else a(n/2)*2 + 1.
a(n) = A006519(n) + n - 1. - Reinhard Zumkeller, Feb 02 2007
a(n) = n OR n-1 (bitwise OR of consecutive numbers). - Russ Cox, May 15 2007
a(2*n) = A038712(n) + 2*n. - Reinhard Zumkeller, Aug 07 2011
a((2*n-1)*2^p) = 2^(p+1)*n-1, p >= 0. - Johannes W. Meijer, Feb 01 2013
Sum_{k=1..n} a(k) ~ n^2/2 + (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 24 2022
EXAMPLE
a(20) = a('10100') = '10100' + '11' = '10111' = 23.
MAPLE
nmax:=70: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+1)*n-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 01 2013
MATHEMATICA
Table[BitOr[(n + 1), n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
PROG
(C) int a(int n) { return n | (n-1); } // Russ Cox, May 15 2007
(Haskell)
a086799 n | even n = (a086799 $ div n 2) * 2 + 1
| otherwise = n
-- Reinhard Zumkeller, Aug 07 2011
(PARI) a(n)=bitor(n, n-1) \\ Charles R Greathouse IV, Apr 17 2012
(Python)
def a(n): return n | (n-1)
print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jul 13 2022
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Aug 05 2003
STATUS
approved