|
|
A086798
|
|
Number of coefficients equal to zero in n-th cyclotomic polynomial.
|
|
2
|
|
|
0, 0, 0, 1, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 2, 7, 0, 4, 0, 4, 4, 0, 0, 6, 16, 0, 16, 6, 0, 2, 0, 15, 6, 0, 8, 10, 0, 0, 8, 12, 0, 4, 0, 10, 18, 0, 0, 14, 36, 16, 10, 12, 0, 16, 24, 18, 12, 0, 0, 10, 0, 0, 28, 31, 18, 6, 0, 16, 14, 8, 0, 22, 0, 0, 34, 18, 30, 8, 0, 28, 52, 0, 0, 16, 24, 0, 18, 30, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
REFERENCES
|
See A051664.
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..65537 (terms 1..1000 from T. D. Noe)
|
|
FORMULA
|
From Benoit Cloitre, Aug 06 2003: (Start)
a(4n+2) = a(2n+1); a(4n) = a(2n) + phi(2n).
When p is an odd prime and m integer >= 1: a(p^m) = a(2*p^m) = p^m - p^(m-1) - p + 1. In particular a(p) = a(2p) = 0. (End)
a(n) = 1 + phi(n) - A051664(n) - T. D. Noe, Aug 08 2003
|
|
MATHEMATICA
|
Table[Count[CoefficientList[Cyclotomic[n, x], x], _?(#==0&)], {n, 0, 100}]
|
|
PROG
|
(PARI) a(n)=sum(k=0, eulerphi(n), if(polcoeff(polcyclo(n), k), 0, 1))
(PARI) A086798(n) = (1 + eulerphi(n) - length(select(x->x!=0, Vec(polcyclo(n))))); \\ Antti Karttunen, Sep 21 2018
|
|
CROSSREFS
|
Cf. A086765, A086780.
Cf. A051664 (number of nonzero terms in n-th cyclotomic polynomial).
Sequence in context: A025096 A261137 A319341 * A155061 A322016 A247446
Adjacent sequences: A086795 A086796 A086797 * A086799 A086800 A086801
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003
|
|
EXTENSIONS
|
More terms from Benoit Cloitre and T. D. Noe, Aug 06 2003
|
|
STATUS
|
approved
|
|
|
|