OFFSET
1,1
COMMENTS
Yet another variant of the Kaprekar numbers A006886. - N. J. A. Sloane, Aug 06 2017
From Bernard Schott, Jan 21 2022: (Start)
Three subsequences:
-> {(10^m-1)^2, m >= 1} = A059988 \ {0}; see example 9801.
-> {(10^m-1)^2 * 10^(2*m) / 4, m >= 1} = A350869 \ {0}; see example 2025.
-> {(10^m+1)^2 * 10^(2*m) / 4, m >= 1} = A038544 \ {1}, see example 3025. (End)
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..25000
FORMULA
a(n) = A290449(n)^2. - Bernard Schott, Jan 20 2022
EXAMPLE
2025 = (20 + 25)^2, so 2025 is in the sequence.
3025 = (30 + 25)^2, so 3025 is in the sequence.
9801 = (98 + 01)^2, so 9801 is in the sequence.
MATHEMATICA
Select[Range[600000]^2, EvenQ[len=IntegerLength[#]] && # == (Mod[#, 10^(len/2)] + Floor[#/10^(len/2)])^2 &] (* Stefano Spezia, Jan 01 2025 *)
PROG
(PARI) forstep(m=1, 7, 2, p=10^((m+1)/2); for(n=10^m, 10^(m+1)-1, d=lift(Mod(n, p)); if(((n-d)/p+d)^2==n, print1(n, ", "))));
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Arkadiusz Wesolowski, Feb 20 2014
EXTENSIONS
a(12)-a(24) from Donovan Johnson, Feb 22 2014
STATUS
approved