login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350870
Numbers k = x.y such that x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.
4
81, 2025, 3025, 494209, 24502500, 25502500, 52881984, 60481729, 6049417284, 6832014336, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969, 213018248521, 217930248900, 249500250000, 250500250000, 284270248900, 289940248521, 371718237969, 413908229449, 420744227904
OFFSET
1,1
COMMENTS
Problem proposed on French site Diophante (see link).
We have to solve Diophantine equation (x+y)^2 = x*10^m + y where m = length(x) = length(y).
Squares of a variant of Kaprekar numbers (A045913).
Number of solutions with 2*m digits for m >= 1: 1, 2, 1, 4, 2, 21, ...
Compare with A347541 where x*y divides x.y, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.
FORMULA
a(n) = A045913(n+1)^2.
EXAMPLE
81 = (8+1)^2, hence 81 is a term.
3025 = (30+25)^2, hence 3025 is another term.
PROG
(PARI) upto(n) = {i = 4; i2 = i^2; res = List(); while(i2 <= n, i++; i2 = i^2; if(#digits(i2) % 2 == 1, i = sqrtint(10^(#digits(i2))) + 1; i2 = i^2; ); if(is(i2), listput(res, i2) ); ); res }
is(n) = { my(d = digits(n), d1, d2, frd2); if(#d % 2 == 1, return(0)); d1 = vector(#d \ 2, i, d[i]); d2 = vector(#d \ 2, i, d[i + #d \ 2]); frd2 = fromdigits(d2); 10^(#d \ 2 - 1) <= frd2 && (fromdigits(d1) + frd2)^2 == n } \\ David A. Corneth, Jan 21 2022
CROSSREFS
Equals A238237 \ A350918.
Subsequence of A102766.
Subsequences: A038544, A350869.
Sequence in context: A205978 A037211 A238237 * A282861 A237376 A296577
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jan 20 2022
STATUS
approved