Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jul 27 2024 23:53:35
%S 81,2025,3025,494209,24502500,25502500,52881984,60481729,6049417284,
%T 6832014336,101558217124,108878221089,123448227904,127194229449,
%U 152344237969,213018248521,217930248900,249500250000,250500250000,284270248900,289940248521,371718237969,413908229449,420744227904
%N Numbers k = x.y such that x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.
%C Problem proposed on French site Diophante (see link).
%C We have to solve Diophantine equation (x+y)^2 = x*10^m + y where m = length(x) = length(y).
%C Squares of a variant of Kaprekar numbers (A045913).
%C Number of solutions with 2*m digits for m >= 1: 1, 2, 1, 4, 2, 21, ...
%C Compare with A347541 where x*y divides x.y, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.
%H Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a1-pot-pourri/1024-a1945-concatenations-en-tous-genres">A1945 - Concaténations en tous genres</a> (in French).
%F a(n) = A045913(n+1)^2.
%e 81 = (8+1)^2, hence 81 is a term.
%e 3025 = (30+25)^2, hence 3025 is another term.
%o (PARI) upto(n) = {i = 4; i2 = i^2; res = List(); while(i2 <= n, i++; i2 = i^2; if(#digits(i2) % 2 == 1, i = sqrtint(10^(#digits(i2))) + 1; i2 = i^2; ); if(is(i2), listput(res, i2) ); ); res }
%o is(n) = { my(d = digits(n), d1, d2, frd2); if(#d % 2 == 1, return(0)); d1 = vector(#d \ 2, i, d[i]); d2 = vector(#d \ 2, i, d[i + #d \ 2]); frd2 = fromdigits(d2); 10^(#d \ 2 - 1) <= frd2 && (fromdigits(d1) + frd2)^2 == n } \\ _David A. Corneth_, Jan 21 2022
%Y Equals A238237 \ A350918.
%Y Subsequence of A102766.
%Y Subsequences: A038544, A350869.
%Y Cf. A045913, A347541.
%K nonn,base
%O 1,1
%A _Bernard Schott_, Jan 20 2022