login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045913 Kaprekar numbers: numbers k such that k = q + r and k^2 = q*10^m + r, for some m >= 1, q >= 0 and 0 <= r < 10^m. Here q and r must both have the same number of digits. 8
1, 9, 45, 55, 703, 4950, 5050, 7272, 7777, 77778, 82656, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 643357, 648648, 670033, 681318, 791505, 812890, 818181, 851851, 857143, 4444444, 4927941, 5072059, 5555556, 11111112, 36363636, 38883889, 44363341, 44525548, 49995000, 50005000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A variant of Kaprekar's original definition (A006886).
REFERENCES
D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), 81-82.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.
LINKS
D. E. Iannucci, The Kaprekar numbers, J. Integer Sequences, Vol. 3, 2000, #1.2.
Rosetta Code, Kaprekar numbers
Eric Weisstein's World of Mathematics, Kaprekar Number
Wikipedia, Kaprekar number
EXAMPLE
703 is Kaprekar because 703 = 494 + 209, 703^2 = 494209.
11111112^2 = 123456809876544 = (1234568 + 9876544)^2. The two "halves" of the square have the same length here, although it's not m but rather m - 1.
CROSSREFS
Sequence in context: A006886 A053816 A290449 * A044492 A207359 A243090
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
More terms from Michel ten Voorde, Apr 13 2001
Definition clarified by Reinhard Zumkeller, Oct 05 2014
Definition modified and terms corrected by Max Alekseyev, Aug 06 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 03:33 EDT 2024. Contains 375857 sequences. (Running on oeis4.)