login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238234
Decimal expansion of the alternating sum 1/p(1) - 1/(p(2)*p(3)) + 1/(p(4)*p(5)*p(6)) - 1/(p(7)*p(8)*p(9)*p(10)) + ..., where p(n) is the n-th prime.
1
4, 3, 4, 3, 2, 7, 7, 0, 3, 1, 9, 6, 9, 3, 8, 1, 0, 2, 2, 9, 6, 1, 5, 7, 5, 1, 3, 0, 2, 4, 8, 3, 7, 2, 3, 6, 7, 4, 2, 7, 9, 1, 3, 8, 9, 2, 7, 7, 1, 9, 6, 7, 7, 9, 3, 8, 5, 5, 2, 6, 0, 1, 4, 1, 4, 4, 2, 1, 1, 5, 0, 5, 4, 1, 6, 0, 9, 4, 6, 8, 0, 4, 0, 7, 3, 8, 9, 6, 1, 9, 8, 6, 8, 6, 1, 4, 2, 9, 1, 5, 2, 7, 8, 5, 7
OFFSET
0,1
COMMENTS
Absolute difference between this number and A139395 is about 0.1333426...
EXAMPLE
0.4343277031969381022961575130248372367427913892771967793855...
MAPLE
P:=proc(n) local a, b, i, j, k; a:=0.5; k:=1; for i from 2 by 1 to n do b:=1; for j from k by 1 to k+i-1 do b:=b*1/ithprime(j+1); od; k:=j; a:=evalf(a+b*(-1)^(i-1), 105); od; print(a); end: P(100);
MATHEMATICA
digits = 105; n0 = 10; dn = 10; t[n_] := n*(n + 1)/2; Clear[p]; p[n_] := p[n] = Sum[(-1)^(k + 1)/Product[Prime[j], {j, t[k] - k + 1, t[k]}], {k, 1, n}] // N[#, digits] &; p[n0]; p[n = n0 + dn]; While[RealDigits[p[n]] != RealDigits[p[n - dn]], Print["n = ", n]; n = n + dn]; RealDigits[p[n], 10, digits] // First (* Jean-François Alcover, Aug 12 2014, adapted from PARI *)
PROG
(PARI) default(realprecision, 120);
T(n) = n*(n + 1)/2; \\ T(n) = A000217(n).
sum(k = 1, 100, (-1.)^(k-1)/prod(j = T(k) - k + 1, T(k), prime(j))) \\ Rick L. Shepherd, Mar 07 2014
CROSSREFS
Sequence in context: A002285 A106049 A367914 * A367439 A367126 A136627
KEYWORD
nonn,cons,easy
AUTHOR
Paolo P. Lava, Feb 27 2014 - following a suggestion of Jean-François Alcover.
EXTENSIONS
More terms from and offset corrected by Rick L. Shepherd, Mar 07 2014
STATUS
approved