login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106049
Silver dragon four-symbol substitution: characteristic polynomial:x^4-2x^3+x^2-4.
0
4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 4, 3, 4, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 4, 3, 4, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 4, 3, 4, 1, 2, 1, 2, 1, 4, 3, 4, 1, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 1, 4, 3, 4, 1, 2, 1, 2, 1, 4, 3, 4, 1, 2
OFFSET
0,1
COMMENTS
Entirely new dragon that tiles with self-similar voids: Level 16 to see it: bb = aa /. 1 -> {1, 0} /. 2 -> {0, 1} /. 3 -> {-1, 0} /. 4 -> {0, -1}; ListPlot[FoldList[Plus, {0, 0}, bb], PlotRange -> All, PlotJoined -> True, Axes -> False];
FORMULA
1->{2, 1, 2}, 2->{3}, 3->{4, 3, 4}, 4->{1}
MATHEMATICA
s[1] = {2, 1, 2}; s[2] = {3}; s[3] = {4, 3, 4}; s[4] = {1}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[7]
CROSSREFS
Sequence in context: A058290 A356033 A002285 * A367914 A238234 A367439
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 06 2005
STATUS
approved