login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356033
Decimal expansion of (-1 + sqrt(13))/6 = A223139/3.
4
4, 3, 4, 2, 5, 8, 5, 4, 5, 9, 1, 0, 6, 6, 4, 8, 8, 2, 1, 8, 6, 5, 3, 6, 8, 7, 7, 9, 1, 1, 7, 4, 9, 3, 2, 4, 3, 7, 5, 2, 1, 6, 0, 9, 5, 6, 4, 0, 8, 7, 4, 3, 6, 8, 7, 8, 5, 0, 7, 5, 5, 0, 9, 3, 7, 1, 1, 9, 4, 4, 9, 1, 3, 8, 2, 1, 6, 8
OFFSET
0,1
COMMENTS
This constant r, an algebraic integer of the quadratic number field Q(13), is the positive root of its monic minimal polynomial x^2 + x/3 - 1/3. The negative root is -(1 + sqrt(13))/6 = -A209927/3 = -(A188943 - 1).
r^n = A052533(-n) + A006130(-(n+1))*r, for n >= 0, with A052533(-n) = 3*sqrt(-3)^(-n-2)*Snx(-n-2,1/sqrt(-3)), and A006130(-(n+1)) = sqrt(-3)^(-(n+1))*Snx(-(n+1), 1/sqrt(-3)), with the S-Chebyshev polynomials (see A049310), with S(-n, x) = -S(n-2, x), for n>=2, and S(-1, x) = 0. - Wolfdieter Lang, Nov 27 2023
FORMULA
r = (-1 + sqrt(13))/6 = A223139/3 = 1/A209927.
EXAMPLE
0.4342585459106648821865368779117493243752160956408743687850755...
MATHEMATICA
First[RealDigits[x/.N[Last[Solve[3x^2+x-1==0, x]], 78]]] (* Stefano Spezia, Aug 29 2022 *)
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Aug 29 2022
STATUS
approved