OFFSET
0,1
COMMENTS
This constant r, an algebraic integer of the quadratic number field Q(13), is the positive root of its monic minimal polynomial x^2 + x/3 - 1/3. The negative root is -(1 + sqrt(13))/6 = -A209927/3 = -(A188943 - 1).
r^n = A052533(-n) + A006130(-(n+1))*r, for n >= 0, with A052533(-n) = 3*sqrt(-3)^(-n-2)*Snx(-n-2,1/sqrt(-3)), and A006130(-(n+1)) = sqrt(-3)^(-(n+1))*Snx(-(n+1), 1/sqrt(-3)), with the S-Chebyshev polynomials (see A049310), with S(-n, x) = -S(n-2, x), for n>=2, and S(-1, x) = 0. - Wolfdieter Lang, Nov 27 2023
EXAMPLE
0.4342585459106648821865368779117493243752160956408743687850755...
MATHEMATICA
First[RealDigits[x/.N[Last[Solve[3x^2+x-1==0, x]], 78]]] (* Stefano Spezia, Aug 29 2022 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Aug 29 2022
STATUS
approved