OFFSET
1,1
COMMENTS
This is the minimum number having the property that there are uncountably many permutation classes with the growth rate equal to that number. [Vatter] - Andrey Zabolotskiy, Dec 04 2024
LINKS
Vincent Vatter, Small permutation classes, Proc. London Math. Soc. (3), 103 (2011), 879-921; arXiv:0712.4006 [math.CO], 2007-2016.
Wikipedia, Supersilver ratio.
FORMULA
Equals ((172 + 12*sqrt(177))^(1/3)+16/(172 + 12*sqrt(177))^(1/3) + 4)/6.
Equals ((172 + 12*sqrt(177))^(1/3) + (172 - 12*sqrt(177))^(1/3) + 4)/6.
Equals (((1/2)*(43 + 3*sqrt(3*59)))^(1/3) + ((1/2)*(43 - 3*sqrt(3*59)))^(1/3) + 2)/3.
Equals 2*(1 + 2*cosh(log((43 + 3*sqrt(177))/16)/3))/3. - Vaclav Kotesovec, Aug 19 2022
Equals y + 2/3 where y = 1.538902... is the real root of y^3 - (4/3)*y - 43/27.
Equals 1 + A137421. - R. J. Mathar, Sep 23 2022
Equals 1/A272874. - Hugo Pfoertner, Sep 11 2024
EXAMPLE
2.2055694304005903117020286177838234263771089195976994404705522035518347903...
MATHEMATICA
First[RealDigits[N[Root[#1^3-2#1^2-1 &, 1, 0], 78]]] (* Stefano Spezia, Aug 19 2022 *)
PROG
(PARI) solve(x=2, 3, x^3 - 2*x^2 - 1) \\ Michel Marcus, Aug 19 2022
(PARI) polrootsreal(x^3 - 2*x^2 - 1)[1] \\ Charles R Greathouse IV, Dec 04 2024
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Aug 18 2022
STATUS
approved