login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321127
Irregular triangle read by rows: row n gives the coefficients in the expansion of ((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x.
3
0, 1, 0, 2, 2, 0, 5, 8, 3, 0, 10, 24, 21, 8, 1, 0, 17, 56, 80, 64, 30, 8, 1, 0, 26, 110, 220, 270, 220, 122, 45, 10, 1, 0, 37, 192, 495, 820, 952, 804, 497, 220, 66, 12, 1, 0, 50, 308, 973, 2030, 3059, 3472, 3017, 2004, 1001, 364, 91, 14, 1
OFFSET
0,4
COMMENTS
These are the coefficients of the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(n,n). Hence, T(n,k) gives the corresponding number of Kauffman states having exactly k circles.
REFERENCES
Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..14282 (rows 0 <= n <= 120, flattened).
Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407.
Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal Vol. 14 (2013), 98-113.
Matthew Overduin, The three-variable bracket polynomial for two-bridge knots, California State University REU, 2013.
Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
Wikipedia, 2-bridge knot
FORMULA
T(n,k) = 0 if k = 0, n^2 + 1 if k = 1, and C(2*n, k + 1) - 2*(C(n, k + 1) + C(n, k - 1)) otherwise.
T(n,1) = A002522(n).
T(n,2) = A300401(n,n).
T(n,n) = A001791(n) + A005843(n) - A063524(n).
T(n,k) = A094527(n,k-n+1) if n + 1 < k < 2*n and n > 2.
G.f.: x*(1 - (1 + x + x^2)*y + (1 + x)*(2 - x^2)*y^2)/((1 - y)*(1 - y - x*y)*(1 - (1 + x)^2*y)).
E.g.f.: (exp((1 + x)^2*y) - (exp(x) + 2*exp((1 + x)*y))*(1 - x^2))/x.
EXAMPLE
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9 11 12
----+----------------------------------------------------
0 | 0 1
1 | 0 2 2
2 | 0 5 8 3
3 | 0 10 24 21 8 1
4 | 0 17 56 80 64 30 8 1
5 | 0 26 110 220 270 220 122 45 10 1
6 | 0 37 192 495 820 952 804 497 220 66 12 1
...
MATHEMATICA
row[n_] := CoefficientList[Expand[((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x], x]; Array[row, 12, 0] // Flatten
PROG
(Maxima) T(n, k) := if k = 1 then n^2 + 1 else ((4*k - 2*n)/(k + 1))*binomial(n + 1, k) + binomial(2*n, k + 1)$
create_list(T(n, k), n, 0, 12, k, 0, max(2*n - 1, n + 1));
CROSSREFS
Row sums: A000302.
Row 1 is row 2 in A300453.
Row 2 is also row 2 in A300454 and A316659.
Sequence in context: A213626 A329687 A356035 * A222128 A088972 A355570
KEYWORD
nonn,easy,tabf
AUTHOR
STATUS
approved