Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 10 2019 21:55:17
%S 0,1,0,2,2,0,5,8,3,0,10,24,21,8,1,0,17,56,80,64,30,8,1,0,26,110,220,
%T 270,220,122,45,10,1,0,37,192,495,820,952,804,497,220,66,12,1,0,50,
%U 308,973,2030,3059,3472,3017,2004,1001,364,91,14,1
%N Irregular triangle read by rows: row n gives the coefficients in the expansion of ((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x.
%C These are the coefficients of the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(n,n). Hence, T(n,k) gives the corresponding number of Kauffman states having exactly k circles.
%D Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
%H Michael De Vlieger, <a href="/A321127/b321127.txt">Table of n, a(n) for n = 0..14282</a> (rows 0 <= n <= 120, flattened).
%H Louis H. Kauffman, <a href="https://doi.org/10.1016/0040-9383(87)90009-7">State models and the Jones polynomial</a>, Topology Vol. 26 (1987), 395-407.
%H Kelsey Lafferty, <a href="https://scholar.rose-hulman.edu/rhumj/vol14/iss2/7/">The three-variable bracket polynomial for reduced, alternating links</a>, Rose-Hulman Undergraduate Mathematics Journal Vol. 14 (2013), 98-113.
%H Matthew Overduin, <a href="https://www.math.csusb.edu/reu/OverduinPaper.pdf">The three-variable bracket polynomial for two-bridge knots</a>, California State University REU, 2013.
%H Franck Ramaharo, <a href="https://arxiv.org/abs/1902.08989">A generating polynomial for the two-bridge knot with Conway's notation C(n,r)</a>, arXiv:1902.08989 [math.CO], 2019.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/2-bridge_knot">2-bridge knot</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Bracket_polynomial">Bracket polynomial</a>
%F T(n,k) = 0 if k = 0, n^2 + 1 if k = 1, and C(2*n, k + 1) - 2*(C(n, k + 1) + C(n, k - 1)) otherwise.
%F T(n,1) = A002522(n).
%F T(n,2) = A300401(n,n).
%F T(n,n) = A001791(n) + A005843(n) - A063524(n).
%F T(n,k) = A094527(n,k-n+1) if n + 1 < k < 2*n and n > 2.
%F G.f.: x*(1 - (1 + x + x^2)*y + (1 + x)*(2 - x^2)*y^2)/((1 - y)*(1 - y - x*y)*(1 - (1 + x)^2*y)).
%F E.g.f.: (exp((1 + x)^2*y) - (exp(x) + 2*exp((1 + x)*y))*(1 - x^2))/x.
%e Triangle begins:
%e n\k | 0 1 2 3 4 5 6 7 8 9 11 12
%e ----+----------------------------------------------------
%e 0 | 0 1
%e 1 | 0 2 2
%e 2 | 0 5 8 3
%e 3 | 0 10 24 21 8 1
%e 4 | 0 17 56 80 64 30 8 1
%e 5 | 0 26 110 220 270 220 122 45 10 1
%e 6 | 0 37 192 495 820 952 804 497 220 66 12 1
%e ...
%t row[n_] := CoefficientList[Expand[((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x], x]; Array[row, 12, 0] // Flatten
%o (Maxima) T(n, k) := if k = 1 then n^2 + 1 else ((4*k - 2*n)/(k + 1))*binomial(n + 1, k) + binomial(2*n, k + 1)$
%o create_list(T(n, k), n, 0, 12, k, 0, max(2*n - 1, n + 1));
%Y Row sums: A000302.
%Y Row 1 is row 2 in A300453.
%Y Row 2 is also row 2 in A300454 and A316659.
%Y Cf. A299989, A300184, A300192, A316989.
%K nonn,easy,tabf
%O 0,4
%A _Franck Maminirina Ramaharo_, Nov 19 2018