login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316659
Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x).
3
0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746
OFFSET
0,7
COMMENTS
The triangle is related to the Kauffman bracket polynomial for the Turk's Head Knot ((3,n)-torus knot). Column 1 matches the determinant of the Turk's Head Knots THK(3,k) A004146.
LINKS
Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., Vol. 318 (1990), 417-471.
Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
Alexander Stoimenow, Square numbers, spanning trees and invariants of achiral knots, Communications in Analysis and Geometry, Vol. 13 (2005), 591-631.
FORMULA
T(n,1) = A004146(n).
T(n,2) = A122076(n,1) = A099920(2*n-1).
G.f.: (x^3 - 2*x)/(1 - y) + (2*x - 3*x*y - 2*x^2*y)/(1 - 3*y - 2*x*y + y^2 + 2*x*y^2 + x^2*y^2).
EXAMPLE
The triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10 11
0: 0 0 0 1
1: 0 1 2 1
2: 0 5 8 3
3: 0 16 30 16 2
4: 0 45 104 81 24 2
5: 0 121 340 356 170 35 2
6: 0 320 1068 1411 932 315 48 2
7: 0 841 3262 5209 4396 2079 532 63 2
8: 0 2205 9760 18281 18784 11440 4144 840 80 2
9: 0 5776 28746 61786 74838 55809 26226 7602 1260 99 2
10: 0 15125 83620 202841 282980 249815 144488 54690 13080 1815 120 2
...
MATHEMATICA
v = 3 + 2*x; w = Sqrt[5 + 4*x];
row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];
Array[row, 15, 0] // Flatten
PROG
(Maxima)
v : 3 + 2*x$ w : sqrt(5 + 4*x)$
p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$
for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));
CROSSREFS
Row sums: A000302 (Powers of 4).
Row 1: row 1 of A300184, A300192 and row 0 of A300454.
Row 2: row 2 of A300454.
Sequence in context: A140589 A331955 A185209 * A241218 A266904 A299198
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved