login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316662
Expansion of f(x, x^2) * psi(x^3)^3 in powers of x where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
1
1, 1, 1, 3, 3, 4, 3, 4, 6, 4, 7, 7, 7, 9, 10, 7, 7, 9, 12, 12, 9, 16, 13, 15, 13, 12, 13, 16, 19, 13, 18, 16, 19, 21, 19, 20, 21, 21, 24, 19, 22, 24, 22, 27, 25, 21, 21, 27, 30, 32, 27, 28, 30, 37, 25, 31, 34, 28, 36, 28, 31, 28, 31, 48, 36, 36, 38, 31, 42, 37
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-7/6) * eta(q^2) * eta(q^6)^5 / (eta(q) * eta(q^3)) in powers of q.
Expansion of b(x^2) * c(x^2)^2 / sqrt(b(x) * c(x)/3) in powers of x where b(), c() are cubic AGM theta functions.
Expansion of psi(x^3) * f(-x^6)^3 / chi(-x) = f(-x^6)^4 / (chi(-x) * chi(-x^3)) = f(-x^6)^5 /(f(-x^3) * chi(-x)) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(3*k)) * (1 - x^(6*k))^4.
EXAMPLE
G.f. = 1 + x + x^2 + 3*x^3 + 3*x^4 + 4*x^5 + 3*x^6 + 4*x^7 + 6*x^8 + ...
G.f. = q^7 + q^13 + q^19 + 3*q^25 + 3*q^31 + 4*q^37 + 3*q^43 + 4*q^49 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^6]^4 / (QPochhammer[ x, x^2] QPochhammer[ x^3, x^6]), {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x^6]^5 / (QPochhammer[ x, x^2] QPochhammer[ x^3]), {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^6]^5 / (QPochhammer[ x] QPochhammer[x^3]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^5 / (eta(x + A) * eta(x^3 + A)), n))};
(Magma) Basis( ModularForms( Gamma0(36), 2), 427) [8];
CROSSREFS
Sequence in context: A175928 A161357 A138372 * A123708 A350501 A102302
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 09 2018
STATUS
approved