login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316661
a(n) = ceiling(sqrt((2*n)^n)).
1
1, 2, 4, 15, 64, 317, 1728, 10268, 65536, 445376, 3200000, 24172677, 191102976, 1575167570, 13492928512, 119786923327, 1099511627776, 10412878353557, 101559956668416, 1018460448140641, 10485760000000000, 110692335104026964, 1196683881290399744
OFFSET
0,2
COMMENTS
a(0)=1 relies on the algebraic identity 0^0 = 1 (à la Knuth).
LINKS
D. E. Knuth, Two Notes on Notation, The American Mathematical Monthly, 99 (1992), 403-422.
MATHEMATICA
Join[{1}, Table[Ceiling[Sqrt[(2 n)^n]], {n, 30}]] (* Vincenzo Librandi, Jul 10 2018 *)
PROG
(PARI) a(n) = ceil(sqrt((2*n)^n)); \\ Michel Marcus, Jul 10 2018
(Magma) [Ceiling(Sqrt((2*n)^n)): n in [0..25]]; // Vincenzo Librandi, Jul 10 2018
(Python)
from math import isqrt
def A316661(n): return 1+isqrt((n<<1)**n-1) # Chai Wah Wu, Jul 29 2022
CROSSREFS
Cf. A242764.
Sequence in context: A243796 A153939 A112281 * A014517 A020110 A290024
KEYWORD
nonn,easy
AUTHOR
Greg Huber, Jul 09 2018
STATUS
approved