The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137396 Triangle read by rows: row n gives the coefficients in the expansion of the chromatic polynomial of the n-cycle graphs. 5
 0, 0, -1, 1, 0, 2, -3, 1, 0, -3, 6, -4, 1, 0, 4, -10, 10, -5, 1, 0, -5, 15, -20, 15, -6, 1, 0, 6, -21, 35, -35, 21, -7, 1, 0, -7, 28, -56, 70, -56, 28, -8, 1, 0, 8, -36, 84, -126, 126, -84, 36, -9, 1, 0, -9, 45, -120, 210, -252, 210, -120, 45, -10, 1, 0, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS The chromatic polynomial of an n-cycle graph is p(x;n) = (x - 1)^n + (-1)^n*(x - 1). - Franck Maminirina Ramaharo, Aug 11 2018 REFERENCES Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 353. LINKS Amotz Bar-Noy, Graph Algorithms, Chromatic Polynomials. Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019. Eric Weisstein's World of Mathematics, Chromatic Polynomial Eric Weisstein's World of Mathematics, Cycle Graph. FORMULA p(x;n) = (x - 2)*p(x;n-1) + (x - 1)*p(x;n-2). From Franck Maminirina Ramaharo, Aug 11 2018: (Start) T(n,0) = 0 for n > 0, and T(n,1) = (n-1)*(-1)^(n-1) for n > 1. T(n,k) = (-1)^(n - k)*binomial(n,k) for k > 1. (End) EXAMPLE Triangle begins: n\k| 0   1    2     3     4     5     6     7     8    9   10 11 ---------------------------------------------------------------- 1  | 0 2  | 0  -1    1 3  | 0   2   -3     1 4  | 0  -3    6    -4     1 5  | 0   4  -10    10    -5     1 6  | 0  -5   15   -20    15    -6     1 7  | 0   6  -21    35   -35    21    -7     1 8  | 0  -7   28   -56    70   -56    28    -8     1 9  | 0   8  -36    84  -126   126   -84    36    -9    1 10 | 0  -9   45  -120   210  -252   210  -120    45  -10    1 11 | 0  10  -55   165  -330   462  -462   330  -165   55  -11  1 ... reformatted and extended. - Franck Maminirina Ramaharo, Aug 11 2018 PROG (Maxima) t(n, k) := ratcoef((x - 1)^n + (-1)^n*(x - 1), x, k)\$ T:[0]\$ for n:2 thru 11 do T:append(T, makelist(t(n, k), k, 0, n))\$ T; /* Franck Maminirina Ramaharo, Aug 11 2018 */ CROSSREFS Cf. A123192, A300453. Sequence in context: A004572 A082839 A130717 * A244213 A346415 A178245 Adjacent sequences:  A137393 A137394 A137395 * A137397 A137398 A137399 KEYWORD tabf,sign AUTHOR Roger L. Bagula, Apr 10 2008 EXTENSIONS Edited, new name, and corrected by Franck Maminirina Ramaharo, Aug 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 06:45 EDT 2021. Contains 346384 sequences. (Running on oeis4.)