login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137394
Triangular sequence from a Pidduck polynomials expansion: p(t) = (t/(1 - t))*((1 + t)/(1 - t))^x.
0
1, 2, 4, 6, 12, 12, 24, 64, 48, 32, 120, 320, 400, 160, 80, 720, 2208, 2400, 1920, 480, 192, 5040, 15456, 21952, 13440, 7840, 1344, 448, 40320, 135168, 175616, 157696, 62720, 28672, 3584, 1024, 362880, 1216512, 1884672, 1419264, 919296, 258048
OFFSET
1,2
COMMENTS
The Wikipedia article has the correct definition of Pidduck polynomials. It uses (1/(1 - t))*((1 + t)/(1 - t))^x. The MathWorld article equation (3) has a typo which is copied here. Note that the values P_0(x) = 1, P_1(x) = 2x+1, P_2(x) = 4x^2 + 4x + 2, etc. given in MathWorld are correct though. - Michael Somos, May 27 2023
LINKS
Eric Weisstein's World of Mathematics, Pidduck Polynomial.
FORMULA
p(t) = (t/(1 - t))*((1 + t)/(1 - t))^x = Sum(s(x,k)*t^k/k!,{k,0,Infinity}]; Out(n,m)=2^(n+2)*n!*Coefficient(s(x,n))
EXAMPLE
{0},
{1},
{2, 4},
{6, 12, 12},
{24, 64, 48, 32},
{120, 320, 400, 160, 80},
{720, 2208, 2400, 1920, 480, 192},
{5040, 15456, 21952, 13440, 7840, 1344, 448},
{40320, 135168, 175616, 157696, 62720, 28672, 3584, 1024},
{362880, 1216512, 1884672, 1419264, 919296, 258048, 96768, 9216, 2304}, {3628800, 12971520, 18846720, 18380800, 9192960, 4623360, 967680, 307200, 23040, 5120}
MATHEMATICA
p[t_] = (t/(1 - t))*((1 + t)/(1 - t))^x
Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}];
a = Table[ CoefficientList[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
Flatten[a]
CROSSREFS
Sequence in context: A076868 A056793 A137387 * A062856 A056371 A271822
KEYWORD
nonn,uned,tabf
AUTHOR
Roger L. Bagula, Apr 10 2008
STATUS
approved