login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137391
Triangle: let f(t) = 1 + t + t^2 and g(t) = t + t^2, expansion of p(t) = f(t)*exp(x*g(t)).
0
1, 1, 1, 2, 4, 1, 0, 12, 9, 1, 0, 24, 48, 16, 1, 0, 0, 180, 140, 25, 1, 0, 0, 360, 840, 330, 36, 1, 0, 0, 0, 3360, 2940, 672, 49, 1, 0, 0, 0, 6720, 18480, 8400, 1232, 64, 1, 0, 0, 0, 0, 75600, 75600, 20664, 2088, 81, 1, 0, 0, 0, 0, 151200, 483840, 252000, 45360, 3330
OFFSET
1,4
EXAMPLE
{1},
{1, 1},
{2, 4, 1},
{0, 12, 9, 1},
{0, 24, 48, 16, 1},
{0, 0, 180, 140, 25, 1},
{0, 0, 360, 840, 330, 36, 1},
{0, 0, 0, 3360, 2940, 672, 49, 1},
{0, 0, 0, 6720, 18480, 8400, 1232, 64, 1},
{0, 0, 0, 0, 75600, 75600, 20664, 2088, 81, 1},
{0, 0, 0, 0, 151200, 483840, 252000, 45360, 3330, 100, 1}
MATHEMATICA
f[t_] = 1 + t + t^2;
g[t_] = t + t^2;
p[t_] = f[t]*Exp[x*g[t]];
Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}];
a = Table[ CoefficientList[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
Flatten[a]
CROSSREFS
Sequence in context: A378394 A094344 A211183 * A276207 A248672 A276631
KEYWORD
nonn,uned,tabl,less
AUTHOR
STATUS
approved